Patents by Inventor Kuo-Ju Chen

Kuo-Ju Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955553
    Abstract: Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
    Type: Grant
    Filed: February 24, 2023
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Wen-Yen Chen, Ying-Lang Wang, Liang-Yin Chen, Li-Ting Wang, Huicheng Chang
  • Patent number: 11908740
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a substrate. The semiconductor structure also includes source/drain structures on opposite sides of the gate structure. The semiconductor structure also includes a dielectric layer over the gate structure and the source/drain structures. The semiconductor structure also includes a via plug passing through the dielectric layer and including a first group IV element. The dielectric layer includes a second group IV element, a first compound, and a second compound, and the second compound includes elements in the first compound and the first group IV element.
    Type: Grant
    Filed: November 25, 2022
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po Hsieh, Su-Hao Liu, Hong-Chih Liu, Jing-Huei Huang, Jie-Huang Huang, Lun-Kuang Tan, Huicheng Chang, Liang-Yin Chen, Kuo-Ju Chen
  • Publication number: 20240055300
    Abstract: A method includes forming a fin structure over a substrate; depositing a dummy gate layer over the substrate and the fin structure; depositing a hard mask stack over the dummy gate layer; depositing a photoresist bottom layer over the hard mask stack, wherein the photoresist bottom layer has a first stress; performing an implantation process to the photoresist bottom layer to form an implanted bottom layer with a second stress closer to 0 than the first stress; patterning the implanted bottom layer; patterning the hard mask stack and the dummy gate layer by using the patterned implanted bottom layer as an etch mask to form a dummy gate structure over the fin structure; and replacing the dummy gate structure with a metal gate structure.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ting CHANG, Kuo-Ju CHEN, Tien-Shun CHANG, Su-Hao LIU, Huicheng CHANG
  • Patent number: 11901455
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang, Meng-Han Chou
  • Publication number: 20240030312
    Abstract: A method includes forming a fin structure over a substrate; depositing a dummy gate layer over the substrate and the fin structure; etching back the dummy gate layer; performing an implantation process to the dummy gate layer to form an implantation region in the dummy gate layer, wherein a vertical thickness of the dummy gate layer is greater than a vertical thickness of the implantation region; forming a patterned hard mask stack over the implantation region; patterning the implantation region and the dummy gate layer by using the patterned hard mask stack as an etch mask to form a dummy gate structure over the fin structure; and replacing the dummy gate structure with a metal gate structure.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Ju CHEN, Wei-Ting CHANG, Po-Kang HO, Su-Hao LIU, Yee-Chia YEO
  • Patent number: 11862694
    Abstract: Methods for improving sealing between contact plugs and adjacent dielectric layers and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first dielectric layer over a conductive feature, a first portion of the first dielectric layer including a first dopant; a metal feature electrically coupled to the conductive feature, the metal feature including a first contact material in contact with the conductive feature; a second contact material over the first contact material, the second contact material including a material different from the first contact material, a first portion of the second contact material further including the first dopant; and a dielectric liner between the first dielectric layer and the metal feature, a first portion of the dielectric liner including the first dopant.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Ju Chen, Shih-Hsiang Chiu, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230420540
    Abstract: Disclosed is a method of fabricating a contact in a semiconductor device. The method includes: receiving a semiconductor structure having an opening into which the contact is to be formed; forming a metal layer in the opening; forming a bottom anti-reflective coating (BARC) layer in the opening; performing implanting operations with a dopant on the BARC layer and the metal layer, the performing implanting operations including controlling an implant energy level and controlling an implant dosage level to form a crust layer with a desired minimum depth on top of the BARC layer; removing unwanted metal layer sections using wet etching operations, wherein the crust layer and BARC layer protect remaining metal layer sections under the BARC layer from metal loss during the wet etching operations; removing the crust layer and the BARC layer; and forming the contact in the opening over the remaining metal layer sections.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Ju Chen, Su-Hao Liu, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11854870
    Abstract: A method for making a middle-of-line interconnect structure in a semiconductor device includes forming, near a surface of a first interconnect structure comprised of a first metal, a region of varied composition including the first metal and a second element. The method further includes forming a recess within the region of varied composition. The recess laterally extends a first distance along the surface and vertically extends a second distance below the first surface. The method further includes filling the recess with a second metal to form a second interconnect structure that contacts the first interconnect structure.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Cheng Chou, Yu-Fang Huang, Kuo-Ju Chen, Ying-Liang Chuang, Chun-Neng Lin, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20230411474
    Abstract: Methods for improving sealing between contact plugs and adjacent dielectric layers and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first dielectric layer over a conductive feature, a first portion of the first dielectric layer including a first dopant; a metal feature electrically coupled to the conductive feature, the metal feature including a first contact material in contact with the conductive feature; a second contact material over the first contact material, the second contact material including a material different from the first contact material, a first portion of the second contact material further including the first dopant; and a dielectric liner between the first dielectric layer and the metal feature, a first portion of the dielectric liner including the first dopant.
    Type: Application
    Filed: August 7, 2023
    Publication date: December 21, 2023
    Inventors: Kuo-Ju Chen, Shih-Hsiang Chiu, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230386898
    Abstract: A method for making a middle-of-line interconnect structure in a semiconductor device includes forming, near a surface of a first interconnect structure comprised of a first metal, a region of varied composition including the first metal and a second element. The method further includes forming a recess within the region of varied composition. The recess laterally extends a first distance along the surface and vertically extends a second distance below the first surface. The method further includes filling the recess with a second metal to form a second interconnect structure that contacts the first interconnect structure.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Cheng Chou, Yu-Fang Huang, Kuo-Ju Chen, Ying-Liang Chuang, Chun-Neng Lin, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20230387251
    Abstract: A method for manufacturing a semiconductor device includes: forming a patterned structure on a substrate, the patterned structure including a dielectric layer and a dummy gate structure disposed in the dielectric layer; and subjecting the patterned structure to an ion implantation process so as to modulate a profile of the dummy gate structure.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tien-Shun CHANG, Kuo-Ju CHEN, Sih-Jie LIU, Wei-Fu WANG, Yi-Chao WANG, Li-Ting WANG, Su-Hao LIU, Huicheng CHANG, Yee-Chia YEO
  • Publication number: 20230369103
    Abstract: A connecting structure includes a first dielectric layer disposed over a substrate and a conductive feature, a doped dielectric layer disposed over the first dielectric layer, a first metal portion disposed in the first dielectric layer and in contact with the conductive feature, and a doped metal portion disposed over the first metal portion. The first metal portion and the doped metal portion include a same noble metal material. The doped dielectric layer and the doped metal portion include same dopants.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Kuo-Ju Chen, Chun-Hsien Huang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230352533
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 2, 2023
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 11791204
    Abstract: A connecting structure includes a first dielectric layer disposed over a substrate and a conductive feature, a doped dielectric layer disposed over the first dielectric layer, a first metal portion disposed in the first dielectric layer and in contact with the conductive feature, and a doped metal portion disposed over the first metal portion. The first metal portion and the doped metal portion include a same noble metal material. The doped dielectric layer and the doped metal portion include same dopants.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Ju Chen, Chun-Hsien Huang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230327021
    Abstract: A semiconductor structure includes a source/drain (S/D) feature disposed in a semiconductor layer, a metal gate stack (MG) disposed in a first interlayer dielectric (ILD) layer and adjacent to the S/D feature, a second ILD layer disposed over the MG, and an S/D contact disposed over the S/D feature. The semiconductor structure further includes an air gap disposed between a sidewall of a bottom portion of the S/D contact and the first ILD layer, where a sidewall of a top portion of the S/D contact is in direct contact with the second ILD layer.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 12, 2023
    Inventors: Chao-Hsun Wang, Chen-Ming Lee, Kuo-Yi Chao, Mei-Yun Wang, Pei-Yu Chou, Kuo-Ju Chen
  • Publication number: 20230317519
    Abstract: The present disclosure provides methods for forming conductive features in a dielectric layer without using adhesion layers or barrier layers and devices formed thereby. In some embodiments, a structure comprising a dielectric layer over a substrate, and a conductive feature disposed through the dielectric layer. The dielectric layer has a lower surface near the substrate and a top surface distal from the substrate. The conductive feature is in direct contact with the dielectric layer, and the dielectric layer comprises an implant species. A concentration of the implant species in the dielectric layer has a peak concentration proximate the top surface of the dielectric layer, and the concentration of the implant species decreases from the peak concentration in a direction towards the lower surface of the dielectric layer.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Li-Chieh Wu, Tang-Kuei Chang, Kuo-Hsiu Wei, Kei-Wei Chen, Ying-Lang Wang, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Ting-Kui Chang, Chia Hsuan Lee
  • Publication number: 20230282583
    Abstract: A semiconductor device includes a first dielectric layer disposed over a substrate and a conductive feature, a doped dielectric layer disposed over the first dielectric layer, a first metal portion disposed in the first dielectric layer and in contact with the conductive feature, and a doped metal portion disposed over the first metal portion. The first metal portion and the doped metal portion include a same noble metal material. The doped dielectric layer and the doped metal portion include same dopants. The dopants are bonded to the noble metal material.
    Type: Application
    Filed: April 18, 2023
    Publication date: September 7, 2023
    Inventors: Kuo-Ju Chen, Chun-Hsien Huang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11742386
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Publication number: 20230268423
    Abstract: A method of forming a semiconductor device includes forming a first dummy gate structure over a first region of a substrate and a second dummy gate structure over a second region of the substrate, the first region and the second region of the substrate having a first composition, the first composition having a first etch rate; implanting the first region of the substrate with dopants laterally adjacent to the first dummy gate structure, wherein after the implanting the first region, the first region has a second composition having a second etch rate, the second etch rate being different from the first etch rate; etching a first recess in the first region of the substrate having the second composition and a second recess in the second region having the first composition; and epitaxially growing a first source/drain region in the first recess and a second source/drain region in the second recess.
    Type: Application
    Filed: February 21, 2022
    Publication date: August 24, 2023
    Inventors: Tien-Shun Chang, Kuo-Ju Chen, Su-Hao Liu, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230253243
    Abstract: A method includes forming a first dielectric layer over a source/drain region, and forming a source/drain contact plug over and electrically connecting to the source/drain region. A top portion of the source/drain contact plug has a first lateral dimension. An implantation process is performed to implant a dopant into the first dielectric layer. The implantation process results in the source/drain contact plug to have a second lateral dimension smaller than the first lateral dimension. The method further includes forming a second dielectric layer over the etch stop layer, and forming a gate contact plug adjacent to the source/drain contact plug.
    Type: Application
    Filed: March 27, 2023
    Publication date: August 10, 2023
    Inventors: Kuo-Ju Chen, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Meng-Han Chou