Patents by Inventor Kuo-Lung Li
Kuo-Lung Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11600709Abstract: A memory cell includes a substrate. A first STI and a second STI are embedded within the substrate. The first STI and the second STI extend along a first direction. An active region is disposed on the substrate and between the first STI and the second STI. A control gate is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. A tunneling region is disposed in the active region overlapping the active region. A first trench is embedded within the tunneling region. Two second trenches are respectively embedded within the first STI and the second STI. The control gate fills in the first trench and the second trenches. An electron trapping stack is disposed between the tunneling region and the control gate.Type: GrantFiled: June 30, 2022Date of Patent: March 7, 2023Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chih-Hao Pan, Chi-Cheng Huang, Kuo-Lung Li, Szu-Ping Wang, Po-Hsuan Chen, Chao-Sheng Cheng
-
Publication number: 20220336606Abstract: A memory cell includes a substrate. A first STI and a second STI are embedded within the substrate. The first STI and the second STI extend along a first direction. An active region is disposed on the substrate and between the first STI and the second STI. A control gate is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. A tunneling region is disposed in the active region overlapping the active region. A first trench is embedded within the tunneling region. Two second trenches are respectively embedded within the first STI and the second STI. The control gate fills in the first trench and the second trenches. An electron trapping stack is disposed between the tunneling region and the control gate.Type: ApplicationFiled: June 30, 2022Publication date: October 20, 2022Applicant: UNITED MICROELECTRONICS CORP.Inventors: Chih-Hao Pan, Chi-Cheng Huang, Kuo-Lung Li, Szu-Ping Wang, Po-Hsuan Chen, Chao-Sheng Cheng
-
Publication number: 20220271137Abstract: A memory cell includes a substrate. A first STI and a second STI are embedded within the substrate. The first STI and the second STI extend along a first direction. An active region is disposed on the substrate and between the first STI and the second STI. A control gate is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. A tunneling region is disposed in the active region overlapping the active region. A first trench is embedded within the tunneling region. Two second trenches are respectively embedded within the first STI and the second STI. The control gate fills in the first trench and the second trenches. An electron trapping stack is disposed between the tunneling region and the control gate.Type: ApplicationFiled: March 31, 2021Publication date: August 25, 2022Inventors: Chih-Hao Pan, Chi-Cheng Huang, Kuo-Lung Li, Szu-Ping Wang, Po-Hsuan Chen, Chao-Sheng Cheng
-
Patent number: 11417742Abstract: A memory cell includes a substrate. A first STI and a second STI are embedded within the substrate. The first STI and the second STI extend along a first direction. An active region is disposed on the substrate and between the first STI and the second STI. A control gate is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. A tunneling region is disposed in the active region overlapping the active region. A first trench is embedded within the tunneling region. Two second trenches are respectively embedded within the first STI and the second STI. The control gate fills in the first trench and the second trenches. An electron trapping stack is disposed between the tunneling region and the control gate.Type: GrantFiled: March 31, 2021Date of Patent: August 16, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chih-Hao Pan, Chi-Cheng Huang, Kuo-Lung Li, Szu-Ping Wang, Po-Hsuan Chen, Chao-Sheng Cheng
-
Patent number: 11374109Abstract: A method for fabricating gate structures includes providing a substrate, configured to have a first region and a second region. Dummy gate structures are formed on the substrate at the first and second regions, wherein each of the dummy gate structures has a first gate insulating layer on the substrate and a dummy gate on the first gate insulating layer. An inter-layer dielectric layer is formed over the dummy gate structures. The inter-layer dielectric layer is polished to expose all of the dummy gates. The dummy gates are removed. The first gate insulating layer at the second region is removed. A second gate insulating layer is formed on the substrate at the second region, wherein the first gate insulating layer is thicker than the second insulating layer. Metal gates are formed on the first and the second insulating layer.Type: GrantFiled: October 31, 2019Date of Patent: June 28, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chih-Hao Pan, Chi-Cheng Huang, Kuo-Lung Li, Szu-Ping Wang, Po-Hsuan Chen, Chao-Sheng Cheng
-
Patent number: 11362186Abstract: A non-volatile memory device is provided. The non-volatile memory device includes a substrate, a first gate structure disposed on the substrate, a second gate structure disposed on the substrate, and a memory gate structure disposed on the substrate and between the first gate structure and the second gate structure. The memory gate structure at least covers the first gate structure and the second gate structure. The memory gate structure includes a charge storage layer disposed on the substrate and a memory gate layer disposed on the charge storage layer.Type: GrantFiled: March 27, 2020Date of Patent: June 14, 2022Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Lung Li, Chih-Hao Pan, Szu-Ping Wang, Po-Hsuan Chen, Chi-Cheng Huang
-
Publication number: 20210265474Abstract: A non-volatile memory device is provided. The non-volatile memory device includes a substrate, a first gate structure disposed on the substrate, a second gate structure disposed on the substrate, and a memory gate structure disposed on the substrate and between the first gate structure and the second gate structure. The memory gate structure at least covers the first gate structure and the second gate structure. The memory gate structure includes a charge storage layer disposed on the substrate and a memory gate layer disposed on the charge storage layer.Type: ApplicationFiled: March 27, 2020Publication date: August 26, 2021Applicant: United Microelectronics Corp.Inventors: Kuo-Lung Li, Chih-Hao Pan, Szu-Ping Wang, Po-Hsuan Chen, Chi-Cheng Huang
-
Publication number: 20210134979Abstract: A method for fabricating gate structures includes providing a substrate, configured to have a first region and a second region. Dummy gate structures are formed on the substrate at the first and second regions, wherein each of the dummy gate structures has a first gate insulating layer on the substrate and a dummy gate on the first gate insulating layer. An inter-layer dielectric layer is formed over the dummy gate structures. The inter-layer dielectric layer is polished to expose all of the dummy gates. The dummy gates are removed. The first gate insulating layer at the second region is removed. A second gate insulating layer is formed on the substrate at the second region, wherein the first gate insulating layer is thicker than the second insulating layer. Metal gates are formed on the first and the second insulating layer.Type: ApplicationFiled: October 31, 2019Publication date: May 6, 2021Applicant: United Microelectronics Corp.Inventors: Chih-Hao Pan, Chi-Cheng Huang, Kuo-Lung Li, Szu-Ping Wang, Po-Hsuan Chen, Chao-Sheng Cheng
-
Patent number: 10720440Abstract: A method for fabricating a semiconductor structure is shown. A first gate of a first device and a second gate of a second device are formed over a semiconductor substrate. First LDD regions are formed in the substrate beside the first gate using the first gate as a mask. A conformal layer is formed covering the first gate, the second gate and the substrate, wherein the conformal layer has sidewall portions on sidewalls of the second gate. Second LDD regions are formed in the substrate beside the second gate using the second gate and the sidewall portions of the conformal layer as a mask.Type: GrantFiled: March 21, 2018Date of Patent: July 21, 2020Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chia-Wen Wang, Hsiang-Chen Lee, Wen-Peng Hsu, Kuo-Lung Li, Meng-Chun Chen, Zi-Jun Liu, Ping-Chia Shih
-
Patent number: 10580780Abstract: Provided is a semiconductor structure including a substrate, an isolation structure, a fuse and two gate electrodes. The isolation structure is located in the substrate and defines active regions of the substrate. The fuse is disposed on the isolation structure. The gate electrodes are disposed on the active regions and connected to ends of the fuse. In an embodiment, a portion of a bottom surface of the fuse is lower than top surfaces of the active regions of the substrate.Type: GrantFiled: June 11, 2018Date of Patent: March 3, 2020Assignee: United Microelectronics Corp.Inventors: Zi-Jun Liu, Ping-Chia Shih, Chi-Cheng Huang, Kuo-Lung Li, Hung-Wei Lin, An-Hsiu Cheng, Chih-Hao Pan, Cheng-Hua Chou, Chih-Hung Wang
-
Publication number: 20190378846Abstract: Provided is a semiconductor structure including a substrate, an isolation structure, a fuse and two gate electrodes. The isolation structure is located in the substrate and defines active regions of the substrate. The fuse is disposed on the isolation structure. The gate electrodes are disposed on the active regions and connected to ends of the fuse. In an embodiment, a portion of a bottom surface of the fuse is lower than top surfaces of the active regions of the substrate.Type: ApplicationFiled: June 11, 2018Publication date: December 12, 2019Applicant: United Microelectronics Corp.Inventors: Zi-Jun Liu, Ping-Chia Shih, Chi-Cheng Huang, Kuo-Lung Li, Hung-Wei Lin, An-Hsiu Cheng, Chih-Hao Pan, Cheng-Hua Chou, Chih-Hung Wang
-
Patent number: 10409748Abstract: A bridge device includes a first physical layer circuit, a first buffer memory, a DMA controller, and a processor. The first physical layer circuit is configured to connect to an upstream device. The first buffer memory is configured to store a first data and transfer data to the upstream device via the first physical layer circuit. The DMA controller is coupled to the first buffer memory and configured to access the first data in the first buffer memory to read and/or write a storage device correspondingly. The processor is coupled to the first buffer memory and the DMA controller. When the bridge device receives a clear feature command from the upstream device, the processor is configured to reset the first buffer memory and the DMA controller to stop the data transferring between the upstream device and the bridge device.Type: GrantFiled: July 4, 2018Date of Patent: September 10, 2019Assignee: ASMEDIA TECHNOLOGY INC.Inventor: Kuo-Lung Li
-
Patent number: 10340282Abstract: A semiconductor memory device includes a substrate, having a plurality of cell regions, wherein the cell regions are parallel and extending along a first direction. A plurality of STI structures is disposed in the substrate, extending along the first direction to isolate the cell regions, wherein the STI structures have a uniform height lower than the substrate in the cell regions. A selection gate line is extending along a second direction and crossing over the cell regions and the STI structures. A control gate line is adjacent to the selection gate line in parallel extending along the second direction and also crosses over the cell regions and the STI structures. The selection gate line and the control gate line together form a two-transistor (2T) memory cell.Type: GrantFiled: February 13, 2018Date of Patent: July 2, 2019Assignee: United Microelectronics Corp.Inventors: Shu-Hung Yu, Chun-Hung Cheng, Chuan-Fu Wang, An-Hsiu Cheng, Ping-Chia Shih, Chi-Cheng Huang, Kuo-Lung Li, Chia-Hui Huang, Chih-Yao Wang, Zi-Jun Liu, Chih-Hao Pan
-
Publication number: 20190108151Abstract: A bridge device includes a first physical layer circuit, a first buffer memory, a DMA controller, and a processor. The first physical layer circuit is configured to connect to an upstream device. The first buffer memory is configured to store a first data and transfer data to the upstream device via the first physical layer circuit. The DMA controller is coupled to the first buffer memory and configured to access the first data in the first buffer memory to read and/or write a storage device correspondingly. The processor is coupled to the first buffer memory and the DMA controller. When the bridge device receives a clear feature command from the upstream device, the processor is configured to reset the first buffer memory and the DMA controller to stop the data transferring between the upstream device and the bridge device.Type: ApplicationFiled: July 4, 2018Publication date: April 11, 2019Inventor: Kuo-Lung LI
-
Publication number: 20190043877Abstract: A non-volatile memory device includes a semiconductor substrate, a control gate electrode, a first oxide-nitride-oxide (ONO) structure, a selecting gate electrode, a second ONO structure, and a spacer structure. The control gate electrode and the selecting gate electrode are disposed on the semiconductor substrate. The first ONO structure is disposed between the control gate electrode and the semiconductor substrate. The second ONO structure is disposed between the control gate electrode and the selecting gate electrode in a first direction. The spacer structure is disposed between the control gate electrode and the second ONO structure in the first direction. A distance between the control gate electrode and the selecting gate electrode in the first direction is smaller than or equal to a sum of a width of the second ONO structure and a width of the spacer structure in the first direction.Type: ApplicationFiled: August 1, 2017Publication date: February 7, 2019Inventors: Kuo-Lung Li, Ping-Chia Shih, Wen-Peng Hsu, Chia-Wen Wang, Meng-Chun Chen, Chih-Hao Pan
-
Patent number: 10199385Abstract: A non-volatile memory device includes a semiconductor substrate, a control gate electrode, a first oxide-nitride-oxide (ONO) structure, a selecting gate electrode, a second ONO structure, and a spacer structure. The control gate electrode and the selecting gate electrode are disposed on the semiconductor substrate. The first ONO structure is disposed between the control gate electrode and the semiconductor substrate. The second ONO structure is disposed between the control gate electrode and the selecting gate electrode in a first direction. The spacer structure is disposed between the control gate electrode and the second ONO structure in the first direction. A distance between the control gate electrode and the selecting gate electrode in the first direction is smaller than or equal to a sum of a width of the second ONO structure and a width of the spacer structure in the first direction.Type: GrantFiled: August 1, 2017Date of Patent: February 5, 2019Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kuo-Lung Li, Ping-Chia Shih, Wen-Peng Hsu, Chia-Wen Wang, Meng-Chun Chen, Chih-Hao Pan
-
Patent number: 10170429Abstract: Package structures and methods for forming the same are provided. A package structure includes a package component including a first bump. The package structure also includes an intermetallic compound (IMC) on the first bump. The package structure further includes an integrated circuit die including a second bump on the IMC. The integrated circuit die and the package component are bonded together through the first bump and the second bump. The IMC extends from the first bump to the second bump to provide good physical and electrical connections between the first bump and the second bump.Type: GrantFiled: February 14, 2017Date of Patent: January 1, 2019Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Heng-Chi Huang, Chien-Chen Li, Kuo-Lung Li, Cheng-Liang Cho, Che-Jung Chu, Kuo-Chio Liu
-
Publication number: 20180211966Abstract: A method for fabricating a semiconductor structure is shown. A first gate of a first device and a second gate of a second device are formed over a semiconductor substrate. First LDD regions are formed in the substrate beside the first gate using the first gate as a mask. A conformal layer is formed covering the first gate, the second gate and the substrate, wherein the conformal layer has sidewall portions on sidewalls of the second gate. Second LDD regions are formed in the substrate beside the second gate using the second gate and the sidewall portions of the conformal layer as a mask.Type: ApplicationFiled: March 21, 2018Publication date: July 26, 2018Applicant: United Microelectronics Corp.Inventors: Chia-Wen Wang, Hsiang-Chen Lee, Wen-Peng Hsu, Kuo-Lung Li, Meng-Chun Chen, Zi-Jun Liu, Ping-Chia Shih
-
Publication number: 20180151537Abstract: Package structures and methods for forming the same are provided. A package structure includes a package component including a first bump. The package structure also includes an intermetallic compound (IMC) on the first bump. The package structure further includes an integrated circuit die including a second bump on the IMC. The integrated circuit die and the package component are bonded together through the first bump and the second bump. The IMC extends from the first bump to the second bump to provide good physical and electrical connections between the first bump and the second bump.Type: ApplicationFiled: February 14, 2017Publication date: May 31, 2018Inventors: Heng-Chi HUANG, Chien-Chen LI, Kuo-Lung LI, Cheng-Liang CHO, Che-Jung CHU, Kuo-Chio LIU
-
Patent number: 9966382Abstract: A method for fabricating a semiconductor structure is shown. A first gate of a first device and a second gate of a second device are formed over a semiconductor substrate. First LDD regions are formed in the substrate beside the first gate using the first gate as a mask. A conformal layer is formed covering the first gate, the second gate and the substrate, wherein the conformal layer has sidewall portions on sidewalls of the second gate. Second LDD regions are formed in the substrate beside the second gate using the second gate and the sidewall portions of the conformal layer as a mask.Type: GrantFiled: August 16, 2016Date of Patent: May 8, 2018Assignee: United Microelectronics Corp.Inventors: Chia-Wen Wang, Hsiang-Chen Lee, Wen-Peng Hsu, Kuo-Lung Li, Meng-Chun Chen, Zi-Jun Liu, Ping-Chia Shih