Patents by Inventor Kuo-Ting CHU

Kuo-Ting CHU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240114698
    Abstract: A semiconductor device includes a substrate, a bottom electrode, a ferroelectric layer, a noble metal electrode, and a non-noble metal electrode. The bottom electrode is over the substrate. The ferroelectric layer is over the bottom electrode. The noble metal electrode is over the ferroelectric layer. The non-noble metal electrode is over the noble metal electrode.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU, Alexander KALNITSKY
  • Publication number: 20240071455
    Abstract: The present disclosure relates to an integrated chip structure. The integrated chip structure includes a first source/drain region and a second source/drain region disposed within a substrate. A select gate is over the substrate between the first source/drain region and the second source/drain region. A ferroelectric random access memory (FeRAM) device is over the substrate between the select gate and the first source/drain region. A transistor device is disposed on an upper surface of the substrate. The substrate has a recessed surface that is below the upper surface of the substrate and that is laterally separated from the upper surface of the substrate by a boundary isolation structure extending into a trench within the upper surface of the substrate. The FeRAM device is arranged over the recessed surface.
    Type: Application
    Filed: November 10, 2023
    Publication date: February 29, 2024
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
  • Patent number: 11869943
    Abstract: A silicon carbide semiconductor device, in particular a monolithically integrated trench Metal-Oxide-Semiconductor Field-Effect Transistor with segmentally surrounded trench Schottky diode, includes a semiconductor substrate, a trench Metal-Oxide-Semiconductor Field-Effect Transistor and a trench Schottky diode. The trench Schottky diode has a perpendicularly disposed trench extending in a first horizontal direction, a metal electrode filled into the trench, and a plurality of doped regions disposed segmentally and extending in a second horizontal direction around the trench. The first horizontal direction is substantially orthogonal to the second horizontal direction, a side wall and a bottom wall of the metal electrode in the trench forms a Schottky junction, and the current flowing from the metal electrode is restricted between adjacent doped regions.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: January 9, 2024
    Assignee: SHANGHAI HESTIA POWER INC.
    Inventors: Chien-Chung Hung, Kuo-Ting Chu, Chwan-Yin Li
  • Publication number: 20220223730
    Abstract: A trench silicon carbide metal-oxide semiconductor field effect transistor includes a silicon carbide semiconductor substrate and a trench metal-oxide semiconductor field effect transistor, the field effect transistor includes a trench vertically arranged and penetrating along a first horizontal direction, a gate insulating layer formed on an inner wall of the trench, a first poly gate formed on the gate insulating layer, a shield region formed outsides and below the trench, and a field plate arranged between a bottom wall of the trench and the shield region, and the field plate has semiconductor doping and is laterally in contact to a current spreading layer to deplete electrons of the current spreading layer when a reverse bias voltage is applied.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 14, 2022
    Inventors: Chien-Chung HUNG, Kuo-Ting CHU, Lurng-Shehng LEE, Chwan-Yin LI
  • Publication number: 20220190117
    Abstract: The invention provides a silicon carbide semiconductor device, in particular to a monolithically integrated trench Metal-Oxide-Semiconductor Field-Effect Transistor with segmentally surrounded trench Schottky diode, which comprises a semiconductor substrate, a trench Metal-Oxide-Semiconductor Field-Effect Transistor and a trench Schottky diode. The trench Schottky diode has a perpendicularly disposed trench extending in a first horizontal direction, a metal electrode filled into the trench, and a plurality of doped regions disposed segmentally and extending in a second horizontal direction around the trench. The first horizontal direction is substantially orthogonal to the second horizontal direction, a side wall and a bottom wall of the metal electrode in the trench forms a Schottky junction, and the current flowing from the metal electrode is restricted between adjacent doped regions.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 16, 2022
    Inventors: Chien-Chung HUNG, Kuo-Ting CHU, Chwan-Yin LI
  • Patent number: 11222971
    Abstract: The present invention provides a silicon carbide (SiC) semiconductor device integrating a metal-oxide-semiconductor field-effect transistor (MOSFET) and a bidirectional voltage clamping circuit. An object of protecting a device is achieved by using the simple structure above, effectively preventing device damage that may be caused by a positive overvoltage and a negative overvoltage between a gate and a source.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: January 11, 2022
    Assignee: Shanghai Hestia Power Inc.
    Inventors: Cheng-Tyng Yen, Chien-Chung Hung, Fu-Jen Hsu, Kuo-Ting Chu
  • Patent number: 11184003
    Abstract: A silicon carbide power device is controlled by a driver and comprises a gate-to-source voltage and a source voltage, wherein the source voltage decreases according to an increase of the gate-to-source voltage, or the source voltage increases according to a decrease of the gate-to-source voltage. Thus, a spike caused by a change of the gate-to-source voltage is suppressed, thereby suppressing the crosstalk phenomenon of the silicon carbide power device.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: November 23, 2021
    Assignee: SHANGHAI HESTIA POWER INC.
    Inventors: Fu-Jen Hsu, Chien-Chung Hung, Kuo-Ting Chu, Chwan-Ying Lee
  • Publication number: 20210273637
    Abstract: A silicon carbride power device controlled by a driver and comprises a gate-to-source voltage and a source voltage, wherein the source voltage decreases according to an increase of the gate-to-source voltage, or the source voltage increases according to a decrease of the gate-to-source voltage. Thus, a spike caused by a change of the gate-to-source voltage is suppressed, thereby suppressing the crosstalk phenomenon of the silicon carbride power device.
    Type: Application
    Filed: September 3, 2020
    Publication date: September 2, 2021
    Inventors: Fu-Jen HSU, Chien-Chung HUNG, Kuo-Ting CHU, Chwan-Ying LEE
  • Publication number: 20210273636
    Abstract: A silicon carbide power device controlled by a driver and comprises a gate-to-source voltage and a source voltage, wherein the source voltage decreases according to an increase of the gate-to-source voltage, or the source voltage increases according to a decrease of the gate-to-source voltage. Thus, a spike caused by a change of the gate-to-source voltage is suppressed, thereby suppressing the crosstalk phenomenon of the silicon carbide power device.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 2, 2021
    Inventors: Fu-Jen HSU, Chien-Chung HUNG, Kuo-Ting CHU, Chwan-Ying LEE
  • Patent number: 11108388
    Abstract: A silicon carbide power device controlled by a driver and comprises a gate-to-source voltage and a source voltage, wherein the source voltage decreases according to an increase of the gate-to-source voltage, or the source voltage increases according to a decrease of the gate-to-source voltage. Thus, a spike caused by a change of the gate-to-source voltage is suppressed, thereby suppressing the crosstalk phenomenon of the silicon carbide power device.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: August 31, 2021
    Assignee: Shanghai Hestia Power, Inc.
    Inventors: Fu-Jen Hsu, Chien-Chung Hung, Kuo-Ting Chu, Chwan-Ying Lee
  • Publication number: 20200161466
    Abstract: The present invention provides a silicon carbide (SiC) semiconductor device integrating a metal-oxide-semiconductor field-effect transistor (MOSFET) and a bidirectional voltage clamping circuit. An object of protecting a device is achieved by using the simple structure above, effectively preventing device damage that may be caused by a positive overvoltage and a negative overvoltage between a gate and a source.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 21, 2020
    Inventors: Cheng-Tyng YEN, Chien-Chung HUNG, Fu-Jen HSU, Kuo-Ting CHU