Patents by Inventor Kuo-Yi Chao

Kuo-Yi Chao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240098960
    Abstract: An integrated circuit structure in which a gate overlies channel region in an active area of a first transistor. The first transistor includes a channel region, a source region and a drain region. A conductive contact is coupled to the drain region of the first transistor. A second transistor that includes a channel region, a source region a drain region is adjacent to the first transistor. The gate of the second transistor is spaced from the gate of the first transistor. A conductive via passes through an insulation layer to electrically connect to the gate of the second transistor. An expanded conductive via overlays both the conductive contact and the conductive via to electrically connect the drain of the first transistor to the gate of the second transistor.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: YU-KUAN LIN, CHANG-TA YANG, PING-WEI WANG, KUO-YI CHAO, MEI-YUN WANG
  • Patent number: 11901426
    Abstract: A method for forming a semiconductor device includes forming a metal gate stack having a gate dielectric layer and a gate electrode disposed over the gate dielectric layer. The gate electrode includes a first metal layer and a second metal layer. The method further includes performing a plasma treatment to a top surface of the metal gate stack and forming a conductive layer over the treated top surface of the metal gate stack. A top portion of the conductive layer is formed above a top surface of the gate dielectric layer, and a bottom portion of the conductive layer penetrates into the first and the second metal layers of the gate electrode at different distances.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Patent number: 11888049
    Abstract: Semiconductor structures and methods of forming the same are provided. A method according to the present disclosure includes forming a stack of epitaxial layers over a substrate, forming a first fin-like structure and a second fin-like structure from the stack, forming an isolation feature between the first fin-like structure and the second fin-like structure, forming a cladding layer over the first fin-like structure and the second fin-like structure, conformally depositing a first dielectric layer over the cladding layer, depositing a second dielectric layer over the first dielectric layer, planarizing the first dielectric layer and the second dielectric layer until the cladding layer are exposed, performing an etch process to etch the second dielectric layer to form a helmet recess, performing a trimming process to trim the first dielectric layer to widen the helmet recess, and depositing a helmet feature in the widened helmet recess.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jen-Hong Chang, Yuan-Ching Peng, Chung-Ting Ko, Kuo-Yi Chao, Chia-Cheng Chao, You-Ting Lin, Chih-Chung Chang, Yi-Hsiu Liu, Jiun-Ming Kuo, Sung-En Lin
  • Patent number: 11856745
    Abstract: An integrated circuit structure in which a gate overlies channel region in an active area of a first transistor. The first transistor includes a channel region, a source region and a drain region. A conductive contact is coupled to the drain region of the first transistor. A second transistor that includes a channel region, a source region a drain region is adjacent to the first transistor. The gate of the second transistor is spaced from the gate of the first transistor. A conductive via passes through an insulation layer to electrically connect to the gate of the second transistor. An expanded conductive via overlays both the conductive contact and the conductive via to electrically connect the drain of the first transistor to the gate of the second transistor.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Kuan Lin, Chang-Ta Yang, Ping-Wei Wang, Kuo-Yi Chao, Mei-Yun Wang
  • Patent number: 11855154
    Abstract: Vertical interconnect structures and methods of forming are provided. The vertical interconnect structures may be formed by partially filling a first opening through one or more dielectric layers with layers of conductive materials. A second opening is formed in a dielectric layer such that a depth of the first opening after partially filling with the layers of conductive materials is close to a depth of the second opening. The remaining portion of the first opening and the second opening may then be simultaneously filled.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Chen-Yuan Kao
  • Publication number: 20230369495
    Abstract: A semiconductor device according to the present disclosure includes a dielectric fin having a helmet layer, a gate structure disposed over a first portion of the helmet layer and extending along a direction, and a dielectric layer adjacent the gate structure and disposed over a second portion of the helmet layer. A width of the first portion along the direction is greater than a width of the second portion along the direction.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Yu-Shan Lu, Chung-I Yang, Kuo-Yi Chao, Wen-Hsing Hsieh, Jiun-Ming Kuo, Chih-Ching Wang, Yuan-Ching Peng
  • Publication number: 20230343712
    Abstract: Vias, along with methods for fabricating vias, are disclosed that exhibit reduced capacitance and resistance. An exemplary interconnect structure includes a first source/drain contact and a second source/drain contact disposed in a dielectric layer. The first source/drain contact physically contacts a first source/drain feature and the second source/drain contact physically contacts a second source/drain feature. A first via having a first via layer configuration, a second via having a second via layer configuration, and a third via having a third via layer configuration are disposed in the dielectric layer. The first via and the second via extend into and physically contact the first source/drain contact and the second source/drain contact, respectively. A first thickness of the first via and a second thickness of the second via are the same. The third via physically contacts a gate structure, which is disposed between the first source/drain contact and the second source/drain contact.
    Type: Application
    Filed: June 30, 2023
    Publication date: October 26, 2023
    Inventors: Shih-Che Lin, Po-Yu Huang, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Wei-Jung Lin, Chen-Yuan Kao
  • Publication number: 20230326804
    Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young
  • Publication number: 20230327021
    Abstract: A semiconductor structure includes a source/drain (S/D) feature disposed in a semiconductor layer, a metal gate stack (MG) disposed in a first interlayer dielectric (ILD) layer and adjacent to the S/D feature, a second ILD layer disposed over the MG, and an S/D contact disposed over the S/D feature. The semiconductor structure further includes an air gap disposed between a sidewall of a bottom portion of the S/D contact and the first ILD layer, where a sidewall of a top portion of the S/D contact is in direct contact with the second ILD layer.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 12, 2023
    Inventors: Chao-Hsun Wang, Chen-Ming Lee, Kuo-Yi Chao, Mei-Yun Wang, Pei-Yu Chou, Kuo-Ju Chen
  • Patent number: 11735665
    Abstract: A semiconductor device according to the present disclosure includes a dielectric fin having a helmet layer, a gate structure disposed over a first portion of the helmet layer and extending along a direction, and a dielectric layer adjacent the gate structure and disposed over a second portion of the helmet layer. A width of the first portion along the direction is greater than a width of the second portion along the direction.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: August 22, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Shan Lu, Chung-I Yang, Kuo-Yi Chao, Wen-Hsing Hsieh, Jiun-Ming Kuo, Chih-Ching Wang, Yuan-Ching Peng
  • Publication number: 20230253244
    Abstract: Various embodiments of the present disclosure provide a via-first process for connecting a contact to a gate electrode. In some embodiments, the contact is formed extending through a first interlayer dielectric (ILD) layer to a source/drain region bordering the gate electrode. An etch stop layer (ESL) is deposited covering the first ILD layer and the contact, and a second ILD layer is deposited covering the ESL. A first etch is performed into the first and second ILD layers and the etch stop layer to form a first opening exposing the gate electrode. Etches are performed into the second ILD layer and the etch stop layer to form a second opening overlying the contact and overlapping the first opening, such that a bottom of the second opening slants downward from the contact to the first opening. A gate-to-contact (GC) structure is formed filling the first and second openings.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: Chao-Hsun Wang, Mei-Yun Wang, Kuo-Yi Chao, Wang-Jung Hsueh
  • Patent number: 11721590
    Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: August 8, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young
  • Publication number: 20230240060
    Abstract: An integrated circuit structure in which a gate overlies channel region in an active area of a first transistor. The first transistor includes a channel region, a source region and a drain region. A conductive contact is coupled to the drain region of the first transistor. A second transistor that includes a channel region, a source region a drain region is adjacent to the first transistor. The gate of the second transistor is spaced from the gate of the first transistor. A conductive via passes through an insulation layer to electrically connect to the gate of the second transistor. An expanded conductive via overlays both the conductive contact and the conductive via to electrically connect the drain of the first transistor to the gate of the second transistor.
    Type: Application
    Filed: March 30, 2023
    Publication date: July 27, 2023
    Inventors: Yu-Kuan LIN, Kuo-Yi CHAO, Chang-Ta YANG, Mei-Yun WANG, Ping-Wei WANG
  • Patent number: 11682729
    Abstract: A semiconductor structure includes a source/drain (S/D) feature disposed in a semiconductor layer, a metal gate stack (MG) disposed in a first interlayer dielectric (ILD) layer and adjacent to the S/D feature, a second ILD layer disposed over the MG, and an S/D contact disposed over the S/D feature. The semiconductor structure further includes an air gap disposed between a sidewall of a bottom portion of the S/D contact and the first ILD layer, where a sidewall of a top portion of the S/D contact is in direct contact with the second ILD layer.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: June 20, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsun Wang, Chen-Ming Lee, Kuo-Yi Chao, Mei-Yun Wang, Pei-Yu Chou, Kuo-Ju Chen
  • Patent number: 11670544
    Abstract: Various embodiments of the present disclosure provide a via-first process for connecting a contact to a gate electrode. In some embodiments, the contact is formed extending through a first interlayer dielectric (ILD) layer to a source/drain region bordering the gate electrode. An etch stop layer (ESL) is deposited covering the first ILD layer and the contact, and a second ILD layer is deposited covering the ESL. A first etch is performed into the first and second ILD layers and the etch stop layer to form a first opening exposing the gate electrode. A series of etches is performed into the second ILD layer and the etch stop layer to form a second opening overlying the contact and overlapping the first opening, such that a bottom of the second opening slants downward from the contact to the first opening. A gate-to-contact (GC) structure is formed filling the first and second openings.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Hsun Wang, Mei-Yun Wang, Kuo-Yi Chao, Wang-Jung Hsueh
  • Publication number: 20230121981
    Abstract: A method for forming a semiconductor device includes forming a metal gate stack having a gate dielectric layer and a gate electrode disposed over the gate dielectric layer. The gate electrode includes a first metal layer and a second metal layer. The method further includes performing a plasma treatment to a top surface of the metal gate stack and forming a conductive layer over the treated top surface of the metal gate stack. A top portion of the conductive layer is formed above a top surface of the gate dielectric layer, and a bottom portion of the conductive layer penetrates into the first and the second metal layers of the gate electrode at different distances.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Patent number: 11621267
    Abstract: An integrated circuit structure in which a gate overlies channel region in an active area of a first transistor. The first transistor includes a channel region, a source region and a drain region. A conductive contact is coupled to the drain region of the first transistor. A second transistor that includes a channel region, a source region a drain region is adjacent to the first transistor. The gate of the second transistor is spaced from the gate of the first transistor. A conductive via passes through an insulation layer to electrically connect to the gate of the second transistor. An expanded conductive via overlays both the conductive contact and the conductive via to electrically connect the drain of the first transistor to the gate of the second transistor.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: April 4, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Kuan Lin, Chang-Ta Yang, Ping-Wei Wang, Kuo-Yi Chao, Mei-Yun Wang
  • Publication number: 20230098409
    Abstract: Semiconductor structures and methods of forming the same are provided. A method according to the present disclosure includes forming a stack of epitaxial layers over a substrate, forming a first fin-like structure and a second fin-like structure from the stack, forming an isolation feature between the first fin-like structure and the second fin-like structure, forming a cladding layer over the first fin-like structure and the second fin-like structure, conformally depositing a first dielectric layer over the cladding layer, depositing a second dielectric layer over the first dielectric layer, planarizing the first dielectric layer and the second dielectric layer until the cladding layer are exposed, performing an etch process to etch the second dielectric layer to form a helmet recess, performing a trimming process to trim the first dielectric layer to widen the helmet recess, and depositing a helmet feature in the widened helmet recess.
    Type: Application
    Filed: December 8, 2022
    Publication date: March 30, 2023
    Inventors: Jen-Hong Chang, Yuan-Ching Peng, Chung-Ting Ko, Kuo-Yi Chao, Chia-Cheng Chao, You-Ting Lin, Chih-Chung Chang, Yi-Hsiu Liu, Jiun-Ming Kuo, Sung-En Lin
  • Publication number: 20230067804
    Abstract: A plurality of first semiconductor layers and second semiconductor layers are formed over a front side of a substrate. The first semiconductor layers interleave with the second semiconductor layers in a vertical direction. The first semiconductor layers and second semiconductor layers are etched into a plurality of stacks. The etching is performed such that a bottommost first semiconductor layer is etched to have a tapered profile in a cross-sectional view. The bottommost first semiconductor layer is replaced with a dielectric layer. The dielectric layer inherits the tapered profile of the bottommost first semiconductor layer. Gate structures are formed over the stacks. The gate structures each extend in a first horizontal direction. A first interconnect structure is formed over the gate structures. A second interconnect structure is formed over a back side of the substrate.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Shu-Wen Shen, Wei-Yang Lee, Yen-Po Lin, Jiun-Ming Kuo, Kuo-Yi Chao, Yuan-Ching Peng
  • Publication number: 20230062305
    Abstract: A method includes forming a semiconductor substrate, forming hard mask layers (HMs) over the semiconductor substrate, forming first mandrels over the HMs, forming second mandrels along sidewalls of the first mandrels, forming a protective layer over the first mandrels and the second mandrels, removing a portion of the protective layer to expose portions of the first and the second mandrels, removing the exposed portions of the second mandrels with respect to the exposed portions of the first mandrels, removing remaining portions of the protective layer to expose remaining portions of the first and second mandrels, where the exposed portions of the first mandrels and the remaining portions of the first and second mandrels form a mandrel structure, patterning the HMs using the mandrel structure as an etching mask, and patterning the semiconductor substrate to form a fin structure using the patterned HMs as an etching mask.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Jen-Hong Chang, Yuan-Ching Peng, Jiun-Ming Kuo, Kuo-Yi Chao, Chih-Chung Chang, You-Ting LIN, Yen-Po Lin, Chen-Hsuan Liao