Patents by Inventor Kurt A. Carlsen

Kurt A. Carlsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8808453
    Abstract: A system for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber. The system includes a CVD abatement apparatus and a resin-type adsorber. The CVD abatement apparatus comprises an enclosure that defines a chamber for receiving the exhaust gas. The enclosure contains a plurality of removable substrates arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the adsorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventor: Kurt A. Carlsen
  • Patent number: 8438520
    Abstract: Methods, systems, computer programs, etc., determine the required number of decoupling capacitors, and approximate locations for the decoupling capacitors, for a region of an integrated circuit. Switching elements of the region are entered into a simulation program running on a computerized device. Also, a power distribution model of the region is entered into the simulation program, and a power-supply voltage compression target is entered into the simulation program. These methods, systems, etc., generate an upper number of decoupling capacitors required to satisfy the compression target when all the switching elements concurrently switch. For each switching element, the methods, systems, etc.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kurt A. Carlsen, Charles S. Chiu, Umberto Garofano, Ze Gui Pang, Eric W. Tremble, David Toub, Ivan L. Wemple
  • Publication number: 20130054202
    Abstract: Methods, systems, computer programs, etc., determine the required number of decoupling capacitors, and approximate locations for the decoupling capacitors, for a region of an integrated circuit. Switching elements of the region are entered into a simulation program running on a computerized device. Also, a power distribution model of the region is entered into the simulation program, and a power-supply voltage compression target is entered into the simulation program. These methods, systems, etc., generate an upper number of decoupling capacitors required to satisfy the compression target when all the switching elements concurrently switch. For each switching element, the methods, systems, etc.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Kurt A. Carlsen, Charles S. Chiu, Umberto Garofano, Ze Gui Pang, Eric W. Tremble, David Toub, Ivan L. Wemple
  • Publication number: 20120125260
    Abstract: A system for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber. The system includes a CVD abatement apparatus and a resin-type adsorber. The CVD abatement apparatus comprises an enclosure that defines a chamber for receiving the exhaust gas. The enclosure contains a plurality of removable substrates arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the adsorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
    Type: Application
    Filed: April 19, 2007
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Kurt A. Carlsen
  • Patent number: 7533357
    Abstract: A method of estimating decaps required for an IC during an initial floorplanning design phase begins by obtaining voltage variation waveforms for a plurality of nodes in a power distribution network of the IC. Next, the method computes a minimum value for each of the voltage variation waveforms and selects voltage variation waveforms below a minimum threshold value. Following this, an FDA is performed on the voltage variation waveforms below the minimum threshold value to create a set of frequency values. This involves performing an FFT on each of the voltage variation waveforms to obtain frequency domain data, wherein frequencies that cause a drop in voltage in the plurality of nodes are filtered. The method then sorts the frequency domain data, wherein the frequency domain data is arranged in order based on amplitude value, total power, frequency components, and/or amplitude of imaginary components.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: May 12, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kurt A. Carlsen, Amol A. Joshi, Faraydon Pakbaz, Sanjay Upreti
  • Publication number: 20070283299
    Abstract: A method of estimating decaps required for an IC during an initial floorplanning design phase begins by obtaining voltage variation waveforms for a plurality of nodes in a power distribution network of the IC. Next, the method computes a minimum value for each of the voltage variation waveforms and selects voltage variation waveforms below a minimum threshold value. Following this, an FDA is performed on the voltage variation waveforms below the minimum threshold value to create a set of frequency values. This involves performing an FFT on each of the voltage variation waveforms to obtain frequency domain data, wherein frequencies that cause a drop in voltage in the plurality of nodes are filtered. The method then sorts the frequency domain data, wherein the frequency domain data is arranged in order based on amplitude value, total power, frequency components, and/or amplitude of imaginary components.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Inventors: Kurt A Carlsen, Amol A. Joshi, Faraydon Pakbaz, Sanjay Upreti
  • Patent number: 7252858
    Abstract: A system and method for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber (12). The system includes a CVD abatement apparatus (20) and a resin-type absorber (22). The CVD abatement apparatus comprises an enclosure (24) that defines a chamber (26) for receiving the exhaust gas. The enclosure contains a plurality of removable substrates (32) arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the absorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventor: Kurt A. Carlsen
  • Patent number: 6821489
    Abstract: A system and method for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber (12). The system includes a CVD abatement apparatus (20) and a resin-type adsorber (22). The CVD abatement apparatus comprises an enclosure (24) that defines a chamber (26) for receiving the exhaust gas. The enclosure contains a plurality of removable substrates (32) arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the adsorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: November 23, 2004
    Assignee: International Business Machines Corporation
    Inventor: Kurt A. Carlsen
  • Publication number: 20040161372
    Abstract: A system and method for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber (12). The system includes a CVD abatement apparatus (20) and a resin-type adsorber (22). The CVD abatement apparatus comprises an enclosure (24) that defines a chamber (26) for receiving the exhaust gas. The enclosure contains a plurality of removable substrates (32) arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the adsorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Inventor: Kurt A. Carlsen
  • Patent number: 6253783
    Abstract: A sub-atmospheric gas delivery system (100) with a backflow control apparatus (10) for preventing backflow into the sub-atmospheric gas source (14). The gas delivery system includes three fluidly coupled sticks: a purge stick (120), a process gas delivery stick (124) and an evacuation stick (130). The backflow control apparatus comprises a gas line (26) fluidly coupling the sub-atmospheric gas source to a chamber (50), a valve (20) attached to the sub-atmospheric gas source for blocking fluid communication between the gas source and the gas line upon receipt of a first signal, a flow restrictor (R) in fluid communication with the gas line and positioned between the valve and the chamber, and first and second pressure transducers (P1 and P2) in fluid communication with the gas line and positioned on either side of the flow restrictor. Each transducer is capable of generating a signal representative of pressure.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: July 3, 2001
    Assignees: International Business Machines, Advanced Technology Materials, Inc.
    Inventors: Kurt A. Carlsen, James McManus, James Dietz
  • Patent number: 6155289
    Abstract: A sub-atmospheric gas delivery system (100) with a backflow control apparatus (10) for preventing backflow into the sub-atmospheric gas source (14). The gas delivery system includes three fluidly coupled sticks: a purge stick (120), a process gas delivery stick (124) and an evacuation stick (130). The backflow control apparatus comprises a gas line (26) fluidly coupling the sub-atmospheric gas source to a chamber (50), a valve (20) attached to the sub-atmospheric gas source for blocking fluid communication between the gas source and the gas line upon receipt of a first signal, a flow restrictor (R) in fluid communication with the gas line and positioned between the valve and the chamber, and first and second pressure transducers (P1 and P2) in fluid communication with the gas line and positioned on either side of the flow restrictor. Each transducer is capable of generating a signal representative of pressure.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: December 5, 2000
    Assignees: International Business Machines, Advanced Technology Materials, Inc.
    Inventors: Kurt A. Carlsen, James McManus, James Dietz