Patents by Inventor Kurt A. Hickey

Kurt A. Hickey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7201221
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: April 10, 2007
    Assignee: Baker Hughes Incorporated
    Inventors: Paulo S. Tubel, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembcke, Kurt A. Hickey
  • Publication number: 20060272809
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Application
    Filed: May 9, 2006
    Publication date: December 7, 2006
    Applicant: Baker Hughes Incorporated
    Inventors: Paulo Tubel, Michael Johnson, John Harrell, Jeffrey Lembecke, Kurt Hickey
  • Patent number: 7040390
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: May 9, 2006
    Assignee: Baker Hughes Incorporated
    Inventors: Paulo S. Tubel, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembcke, Kurt A. Hickey
  • Patent number: 6977367
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: December 20, 2005
    Assignee: Sensor Highway Limited
    Inventors: Paulo S. Tubel, Glynn Williams, Kurt A. Hickey, Nigel Leggett
  • Patent number: 6943340
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforation device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: September 13, 2005
    Assignee: Sensor Highway Limited
    Inventors: Paulo S. Tubel, Glynn Williams, Kurt A. Hickey, Nigel Leggett
  • Publication number: 20050141703
    Abstract: A mobile communication device having a first section, a second section, and a hinge mechanism. Functional devices are positioned within the sections and provide for a multitude of uses. The sections are movable about a first axis of rotation and a second axis of rotation. The movement allows for positioning the sections in various orientations to use the functional devices. A method of using the device is also disclosed for moving the sections in a combination of flip motion, jack-knife motion, and twist motion about the first and second axis of rotation.
    Type: Application
    Filed: May 11, 2004
    Publication date: June 30, 2005
    Inventors: Kurt Hickey, Ivan Wakefield, William Carpenter
  • Publication number: 20050078464
    Abstract: An electronic device has a main body, a flip attached to the main body and multiple input interfaces. A first input interface is disposed on the main body of the electronic device. Second and third input interfaces are disposed on apposing sides of the flip. The flip covers at least a part of the first input interface when the flip is in a closed position. The flip is rotatable so that either the second or third interface can be selectively used when the flip is in the closed position.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 14, 2005
    Inventor: Kurt Hickey
  • Publication number: 20050012036
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Application
    Filed: July 2, 2004
    Publication date: January 20, 2005
    Inventors: Paulo Tubel, Glynn Williams, Kurt Hickey, Nigel Leggett
  • Publication number: 20050009556
    Abstract: A mobile computing device includes a first housing that is rotationally coupled to a second housing, computing circuitry within the first housing and a display that is at least partially disposed within the first housing. The display is configured to visually display information from the computing circuitry to a user. A first user interface device and a second user interface device are at least partially disposed within the second housing. The second housing is configured to be rotated relative to the first housing between a closed position in which the first and second user interface devices are at least partially covered by the first housing, and a deployed position in which the first and second user interface devices are at least partially uncovered on opposite lateral sides of the first housing.
    Type: Application
    Filed: July 7, 2003
    Publication date: January 13, 2005
    Inventors: Kurt Hickey, Hans Eckholm
  • Publication number: 20040256100
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforation, device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Application
    Filed: July 2, 2004
    Publication date: December 23, 2004
    Inventors: Paulo S. Tubel, Glynn Williams, Kurt A. Hickey, Nigel Leggett
  • Patent number: 6828547
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: December 7, 2004
    Assignee: Sensor Highway Limited
    Inventors: Paulo S. Tubel, Glynn Williams, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembcke, Kurt A. Hickey, Nigel Leggett
  • Patent number: 6787758
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: September 7, 2004
    Assignee: Baker Hughes Incorporated
    Inventors: Paulo S. Tubel, Glynn Williams, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembcke, Kurt A. Hickey, Nigel Leggett
  • Publication number: 20040065439
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Application
    Filed: September 29, 2003
    Publication date: April 8, 2004
    Applicant: Baker Hughes Incorporated
    Inventors: Paulo S. Tubel, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembcke, Kurt A. Hickey
  • Publication number: 20030131990
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating, device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Application
    Filed: January 3, 2003
    Publication date: July 17, 2003
    Inventors: Paulo S. Tubel, Glynn Williams, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembcke, Kurt A. Hickey, Nigel Leggett
  • Patent number: 6571046
    Abstract: A downhole fiber optic protection system is disclosed which includes at least one protector sub mounted in a downhole string, the protector sub having at least one recess formed in an outside diameter of the protector sub and optionally including component protectors mounted to the outside diameter of the protector sub whereby the one or more recesses in the outside of the protector sub provide protection to fiber optic components and protected areas are created underneath component protectors further more delicate of the fiber optic connectors. The device is designed to prevent the harsh downhole environment from adversely affecting optical fibers themselves or optical components in the optical fiber system.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: May 27, 2003
    Assignee: Baker Hughes Incorporated
    Inventors: Kurt A. Hickey, Mark D. Hamilton
  • Patent number: 6531694
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: March 11, 2003
    Assignee: Sensor Highway Limited
    Inventors: Paulo S. Tubel, Glynn Williams, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembcke, Kurt A. Hickey, Nigel Leggett
  • Patent number: 6516889
    Abstract: A high load wireline lock features a plurality of dogs supported by a fishing neck. Radial loads, transmitted through the dogs when the lock is engaged, are in turn directed into the fishing neck in the manner so as to distribute the load into the wall of the fishing neck. The contact between the dogs and the fishing neck is along sloping surface which minimize the radial forces against the fishing neck and in turn applies forces in a near tangential direction through the wall of the fishing neck thus greatly increasing the load capacity of the wireline lock.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: February 11, 2003
    Assignee: Baker Hughes Incorporated
    Inventors: Jeffrey J. Lembcke, Kurt A. Hickey
  • Publication number: 20020109080
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Application
    Filed: April 12, 2002
    Publication date: August 15, 2002
    Applicant: Baker Hughes Incorporated
    Inventors: Paulo S. Tubel, Glynn Williams, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembcke, Kurt A. Hickey, Nigel Leggett
  • Patent number: 6315049
    Abstract: A flush valve for a multiple line hydraulic system includes a bifurcated manifold, the bifurcation being provided by a piston actuatable hydraulically, mechanically, electrically magnetically or by fiber optic means. The piston or gate is provided with a port extending diametrically therethrough and oriented to become coaxial with an inlet and outlet of the manifold upon actuation of the piston. With the port aligned the hydraulic fluid in the system can be displaced by fresh fluid. The piston is then deactivated which results in the port becoming misaligned with the inlet and outlet of the manifold. In this condition the hydraulic system is again sealed and functions normally.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: November 13, 2001
    Assignee: Baker Hughes Incorporated
    Inventors: Kurt A. Hickey, Mark D. Hamilton, Nigel Leggett
  • Publication number: 20010020675
    Abstract: This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensors is deployed downhole to provide information about downhole conditions. Parameters related to the chemicals being used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control downhole devices that may be a packer, choke, sliding sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for control of secondary recovery operations online using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.
    Type: Application
    Filed: February 6, 2001
    Publication date: September 13, 2001
    Inventors: Paulo S. Tubel, Glynn Williams, Michael H. Johnson, John W. Harrell, Jeffrey J. Lembecke, Kurt A. Hickey, Nigel Leggett