Patents by Inventor Kurt Blohm

Kurt Blohm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109037
    Abstract: Liquid solution separation (e.g., concentration and/or desalination) methods and related systems involving membrane separators having at least one-semipermeable membrane are provided. In some instances, at least some of the membrane separators permit a portion of solute in a retentate side input stream to pass through the semi-permeable membrane. In some instances, multiple membrane separators are employed, with the membrane separators having different solute permeabilities (e.g., due to varying pore size and/or molecular weight cutoffs). The methods and systems may be configured such that the ratio of mass flow and/or concentration of solute entering the retentate sides of the membrane separators are relatively high compared to the mass flow and/or concentration of solute exiting the retentate sides of the membrane separators.
    Type: Application
    Filed: May 10, 2023
    Publication date: April 4, 2024
    Applicant: Gradiant Corporation
    Inventors: Omkar Lokare, Richard Stover, Looh Tchuin Choong, Kurt Blohm, Ana Claudia Emerenciano Guedes
  • Publication number: 20220364202
    Abstract: A system and process for concentrating a lithium stream is disclosed. The lithium stream is directed to a reverse osmosis unit which produces a concentrate containing lithium compounds. The RO concentrate is directed through two pressure retarded osmosis (PRO) modules connected in series. The two PRO modules further concentrate the RO concentrate and at the same time yield a diluted brine that is effective to drive an energy recovery device. The RO concentrate leaving the PRO modules is directed to an osmotically assisted reverse osmosis (OARO) module which also further concentrates the RO concentrate.
    Type: Application
    Filed: August 31, 2020
    Publication date: November 17, 2022
    Inventors: Kurt Blohm, Jérôme Leparc, Isabelle Lemaitre
  • Publication number: 20220315469
    Abstract: Systems and processes for purifying and concentrating a liquid feed stream are disclosed. In the systems, the concentrated liquid output from the high pressure side of a reverse osmosis stage is used as the draw solution in the low pressure side of the reverse osmosis stage in a configuration called osmotically assisted reverse osmosis. This reduces the osmotic pressure differential across the membrane, permitting high solute concentrations to be obtained, hastening the purification of the liquid. Reduced system pressures are also obtained by arranging multiple osmotically assisted reverse osmosis stages in a cross-current arrangement. Overall system energy consumption is reduced compared to conventional thermal processes for high concentration streams.
    Type: Application
    Filed: June 14, 2022
    Publication date: October 6, 2022
    Inventors: Kurt Blohm, Richard Peterson, Ann E. Lane, Slawomir Winecki, Darwin Argumedo
  • Patent number: 10976228
    Abstract: An apparatus for extracting a material from a liquid includes a concentration stage having a filter, a first path from the filter, and a second path from the filter. Under this configuration, the concentration stage accepts an initial liquid volume. A first liquid not having material collected by the filter is passed along the first path, and concentrated liquid having material therein, which is entrapped by the filter, is directed to the second path. The apparatus also includes an aerosolizing stage coupled to the concentration stage that converts the concentrated liquid into an aerosol and a drying stage that dries the aerosol such that material extracted from the aerosol onto a material substrate.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: April 13, 2021
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Andrew P. Bartko, Kurt Blohm, Ryan W. Daly, Aaron M. Deal, Scott M. Gibbons, Susana Lira-Gonzalez, Benjamin J. Richetti, Nathan Roehr, Theodore J. Ronningen, Christopher Scheitlin
  • Publication number: 20200278280
    Abstract: An apparatus for extracting a material from a liquid includes a concentration stage having a filter, a first path from the filter, and a second path from the filter. Under this configuration, the concentration stage accepts an initial liquid volume. A first liquid not having material collected by the filter is passed along the first path, and concentrated liquid having material therein, which is entrapped by the filter, is directed to the second path. The apparatus also includes an aerosolizing stage coupled to the concentration stage that converts the concentrated liquid into an aerosol and a drying stage that dries the aerosol such that material extracted from the aerosol onto a material substrate.
    Type: Application
    Filed: March 9, 2020
    Publication date: September 3, 2020
    Inventors: Andrew P. Bartko, Kurt Blohm, Ryan W. Daly, Aaron M. Deal, Scott M. Gibbons, Susana Lira-Gonzalez, Benjamin J. Richetti, Nathan Roehr, Theodore J. Ronningen, Christopher Scheitlin
  • Patent number: 10585024
    Abstract: An apparatus for extracting a material from a liquid includes a concentration stage having a tangential flow filter, a first path from the tangential flow filter, and a second path from the tangential flow filter. Under this configuration, the concentration stage accepts an initial liquid volume. A first liquid not having material collected by the tangential flow filter is passed along the first path, and concentrated liquid having material therein, which is entrapped by the filter, is directed to the second path. The apparatus also includes an aerosolizing stage coupled to the concentration stage that converts the concentrated liquid into an aerosol and a drying stage that dries the aerosol such that material extracted from the aerosol onto a material substrate.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: March 10, 2020
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Andrew P. Bartko, Kurt Blohm, Ryan W. Daly, Aaron M. Deal, Scott M. Gibbons, Susana Lira-Gonzalez, Benjamin J. Richetti, Nathan Roehr, Theodore J. Ronningen, Christopher Scheitlin
  • Publication number: 20200064239
    Abstract: An apparatus for extracting a material from a liquid includes a concentration stage having a tangential flow filter, a first path from the tangential flow filter, and a second path from the tangential flow filter. Under this configuration, the concentration stage accepts an initial liquid volume. A first liquid not having material collected by the tangential flow filter is passed along the first path, and concentrated liquid having material therein, which is entrapped by the filter, is directed to the second path. The apparatus also includes an aerosolizing stage coupled to the concentration stage that converts the concentrated liquid into an aerosol and a drying stage that dries the aerosol such that material extracted from the aerosol onto a material substrate.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 27, 2020
    Inventors: Andrew P. Bartko, Kurt Blohm, Ryan W. Daly, Aaron M. Deal, Scott M. Gibbons, Susana Lira-Gonzalez, Benjamin J. Richetti, Nathan Roehr, Theodore J. Ronningen, Christopher Scheitlin
  • Patent number: 10214438
    Abstract: Systems and processes for purifying and concentrating a liquid feed stream are disclosed. In the systems, the concentrated liquid output from the high pressure side of a reverse osmosis stage is used as the draw solution in the low pressure side of the reverse osmosis stage in a configuration called osmotically assisted reverse osmosis. This reduces the osmotic pressure differential across the membrane, permitting high solute concentrations to be obtained, hastening the purification of the liquid. Reduced system pressures are also obtained by arranging multiple osmotically assisted reverse osmosis stages in a cross-current arrangement. Overall system energy consumption is reduced compared to conventional thermal processes for high concentration streams.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: February 26, 2019
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Kurt Blohm, Richard Peterson, Ann E. Lane, Slawomir Winecki
  • Patent number: 10214437
    Abstract: Systems and processes for purifying and concentrating a liquid feed stream are disclosed. In the systems, the concentrated liquid output from the high pressure side of a reverse osmosis stage is used as the draw solution in the low pressure side of the reverse osmosis stage in a configuration called osmotically assisted reverse osmosis. This reduces the osmotic pressure differential across the membrane, permitting high solute concentrations to be obtained, hastening the purification of the liquid. Reduced system pressures are also obtained by arranging multiple osmotically assisted reverse osmosis stages in a cross-current arrangement. Overall system energy consumption is reduced compared to conventional thermal processes for high concentration streams.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: February 26, 2019
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Kurt Blohm, Richard Peterson, Ann E. Lane, Slawomir Winecki, Darwin Argumedo
  • Publication number: 20170349467
    Abstract: Systems and processes for purifying and concentrating a liquid feed stream are disclosed. In the systems, the concentrated liquid output from the high pressure side of a reverse osmosis stage is used as the draw solution in the low pressure side of the reverse osmosis stage in a configuration called osmotically assisted reverse osmosis. This reduces the osmotic pressure differential across the membrane, permitting high solute concentrations to be obtained, hastening the purification of the liquid. Reduced system pressures are also obtained by arranging multiple osmotically assisted reverse osmosis stages in a cross-current arrangement. Overall system energy consumption is reduced compared to conventional thermal processes for high concentration streams.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Kurt Blohm, Richard Peterson, Ann E. Lane, Slawomir Winecki, Darwin Argumedo
  • Publication number: 20170349466
    Abstract: Systems and processes for purifying and concentrating a liquid feed stream are disclosed. In the systems, the concentrated liquid output from the high pressure side of a reverse osmosis stage is used as the draw solution in the low pressure side of the reverse osmosis stage in a configuration called osmotically assisted reverse osmosis. This reduces the osmotic pressure differential across the membrane, permitting high solute concentrations to be obtained, hastening the purification of the liquid. Reduced system pressures are also obtained by arranging multiple osmotically assisted reverse osmosis stages in a cross-current arrangement. Overall system energy consumption is reduced compared to conventional thermal processes for high concentration streams.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Kurt Blohm, Richard Peterson, Ann E. Lane, Slawomir Winecki
  • Publication number: 20170349465
    Abstract: Systems and processes for purifying and concentrating a liquid feed stream are disclosed. In the systems, the concentrated liquid output from the high pressure side of a reverse osmosis stage is used as the draw solution in the low pressure side of the reverse osmosis stage in a configuration called osmotically assisted reverse osmosis. This reduces the osmotic pressure differential across the membrane, permitting high solute concentrations to be obtained, hastening the purification of the liquid. Reduced system pressures are also obtained by arranging multiple osmotically assisted reverse osmosis stages in a cross-current arrangement. Overall system energy consumption is reduced compared to conventional thermal processes for high concentration streams.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Kurt Blohm, Richard Peterson, Ann E. Lane, Slawomir Winecki, Darwin Argumedo