Patents by Inventor Kurt Christenson

Kurt Christenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070161248
    Abstract: A method of removing materials, and preferably photoresist, from a substrate comprises dispensing a liquid sulfuric acid composition comprising sulfuric acid and/or its desiccating species and precursors and having a water/sulfuiric acid molar ratio of no greater than 5:1 onto an material coated substrate in an amount effective to substantially uniformly coat the material coated substrate. The substrate is preferably heated to a temperature of at least about 90° C., either before, during or after dispensing of the liquid sulfuric acid composition. After the substrate is at a temperature of at least about 90° C., the liquid sulfuric acid composition is exposed to water vapor in an amount effective to increase the temperature of the liquid sulfuric acid composition above the temperature of the liquid sulfuric acid composition prior to exposure to the water vapor. The substrate is then preferably rinsed to remove the material.
    Type: Application
    Filed: November 22, 2006
    Publication date: July 12, 2007
    Inventors: Kurt Christenson, Ronald Hanestad, Patricia Ruether, Thomas Wagener
  • Publication number: 20070151576
    Abstract: Improved immersion vessel configurations for treatment of precision manufactured devices such as semiconductor wafers are provided. In one aspect, an immersion vessel is provided wherein the sidewalls of the immersion vessel are less than about 10 mm from the major surfaces of the wafer or wafers. In another aspect, an immersion vessel provided with a megasonic transducer has a cleaning zone that is progressively smaller in width from the area proximal to the transducer to the area that is distal from the transducer. In another aspect, an immersion vessel is provided having at least one movable sidewall to provide variable volume capacity of liquid in the vessel. In another aspect, a self-cleaning wafer liquid treatment system is provided having a plurality of cascade chambers.
    Type: Application
    Filed: January 5, 2007
    Publication date: July 5, 2007
    Inventors: Kurt Christenson, Christina Rathman
  • Publication number: 20060128133
    Abstract: A method for electroless plating of a substrate is provided that comprises exposing an electroless plating reagent comprising a metal to be plated and at least one reducing agent to a solid phase Activation Material to form an activated electroless plating reagent prior to application of the electroless plating reagent to the substrate. The activated electroless plating reagent is applied to a substrate in the process chamber under conditions to cause the metal of the electroless plating reagent to deposit on the substrate. Systems and modules are also described.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 15, 2006
    Inventor: Kurt Christenson
  • Publication number: 20060070979
    Abstract: The present invention relates to methods of processing wafer-like objects (e.g., having an exposed copper feature and/or including low-k dielectric material) with ozone. In certain preferred embodiments, a base is also used to process the wafer-like object(s).
    Type: Application
    Filed: September 13, 2005
    Publication date: April 6, 2006
    Inventors: Kurt Christenson, Philip Clark
  • Publication number: 20050098194
    Abstract: Systems and methods in which one or more wafers are immersed in a sonified liquid during the course of a treatment wherein the sound energy imparted to the liquid is modulated during at least a portion of a treatment. The frequency and/or amplitude of the sound energy may be modulated.
    Type: Application
    Filed: September 10, 2004
    Publication date: May 12, 2005
    Inventors: Kurt Christenson, Thomas Wagener
  • Publication number: 20050072625
    Abstract: Apparatuses and methods for processing semiconductor wafers. In one embodiment, an apparatus includes an immersion processing tank in which one or more wafers are positioned in a processing liquid during a treatment, at least one sound source that is acoustically coupled to the processing liquid and that produces a sound field in the processing liquid contained in the processing tank during a treatment, and a sound diffusing system comprising a plurality of sound diffusing elements positioned in a manner effective to diffuse sound energy transferred from the source to the processing liquid. In another embodiment, the sound diffusing system includes at least one directionally phase modulating element positioned in a manner effective to reduce interference of sound energy in the processing liquid. Related methods are also described.
    Type: Application
    Filed: September 10, 2004
    Publication date: April 7, 2005
    Inventor: Kurt Christenson
  • Publication number: 20050032293
    Abstract: The present invention provides improvements to the use of silyating agents in semiconductor processing. More particularly, the silyating agents may be provided in combination with a substantially non-flammable ether, so that the combination is substantially non-flammable. Additionally, the silyating agent may be utilized in vapor form, or applied in conjunction with the electromagnetic radiation. Each of these embodiments can enhance the usability of the silyating agent, i.e., by rendering the silyating agent more safe, more easily utilized in a variety of processing equipment and/or by enhancing the passivation efficacy/efficiency of the silyating agent.
    Type: Application
    Filed: July 19, 2004
    Publication date: February 10, 2005
    Inventors: Philip Clark, Kurt Christenson, Brent Schwab
  • Publication number: 20020173166
    Abstract: An in-process microelectronic device may be treated by providing a process chamber with an in-process microelectronic device therein, providing an ozone generator and an ozone storage reservoir, the ozone storage reservoir in fluid communication with the ozone generator and the process chamber, generating ozone with the ozone generator for a first period of time and delivering the ozone to the ozone storage reservoir; and subsequently providing ozone from the ozone storage reservoir and the generator to the process chamber during a second period of time different from the first period of time and exposing the in-process microelectronic device thereto.
    Type: Application
    Filed: April 11, 2001
    Publication date: November 21, 2002
    Inventors: Kurt Christenson, Steven L. Nelson