Patents by Inventor Kurt D. Hoffacker

Kurt D. Hoffacker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8361169
    Abstract: Various methods for forming dyed microspheres are provided. One method includes activating a chemical structure coupled to a dye using heat or light to form a reaction intermediate in the presence of a microsphere. The reaction intermediate covalently attaches to a polymer of the microsphere thereby coupling the dye to the polymer and forming the dyed microsphere. Additional methods are provided for forming a dyed microsphere coupled to a molecule. These methods include dyeing the microspheres as described above in addition to synthesizing the molecule on an outer surface of the dyed microspheres. A population of dyed microspheres is also provided. Each of the dyed microspheres of the population includes a dye attached to a polymer of each of the dyed microspheres by a chemical structure. A coefficient of variation in dye characteristics of the population of dyed microspheres attributable to the dye is less than about 10%.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: January 29, 2013
    Assignee: Luminex Corporation
    Inventors: Kurt D. Hoffacker, Ananda G. Lugade, Ewald Terpetschnig
  • Patent number: 8318445
    Abstract: The present invention relates to methods and systems for labeling, isolating, detecting, and/or enumerating a statistically significant number of biological cells, or other biological analytes of interest, present in a complex matrix sample. The isolation of a biological target of interest from a sample mixture is done by immunomagnetic separation. Upon introduction of the sample within an imaging chamber, the capture complex (biological target-magnetic capture agent) will be attracted by the magnetic field and will lay on the surface of the chamber in the focal plane of the imaging system.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: November 27, 2012
    Assignee: Luminex Corporation
    Inventors: Bruce J-C Bernard, Kurt D. Hoffacker, Charles J. Collins
  • Patent number: 8188269
    Abstract: The present invention relates to improved covalent coupling of two or more entities such as biomolecules, polymer compositions, organic/inorganic molecules/materials, and the like, including their combinations, through one or more novel reactive groups attached to linker groups of 2-1000 atoms length. The present invention also contemplates the use of bifunctional bridge molecules to link two or more entities, wherein the functional groups of the bridge molecules are the novel reactive groups of the present invention.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: May 29, 2012
    Assignee: Luminex Corporation
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker, Adam J. Jenkins, Karri L. Michael-Ballard, Leonid Patsenker, Ewald Terpetschnig, Veronica D. Thomason, Ralph McDade
  • Publication number: 20120123026
    Abstract: The present invention relates to improved covalent coupling of two or more entities such as biomolecules, polymer compositions, organic/inorganic molecules/materials, and the like, including their combinations, through one or more novel reactive groups attached to linker groups of 2-1000 atoms length. The present invention also contemplates the use of bifunctional bridge molecules to link two or more entities, wherein the functional groups of the bridge molecules are the novel reactive groups of the present invention.
    Type: Application
    Filed: May 12, 2008
    Publication date: May 17, 2012
    Applicant: Luminex Corporation
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker, Adam J. Jenkins, Karri L. Michael-Ballard, Leonid Patsenker, Ewald Terpetschnig, Veronica D. Thomason, Ralph McDade
  • Patent number: 8153440
    Abstract: Various methods for altering surface characteristics of a microsphere are provided. One method includes coupling an enolic acid to the microsphere to modify the surface characteristics of the microsphere. The surface characteristics may include charge density and/or pKa. A reagent can be coupled to the microsphere via the enolic acid. The reagent may include a biomolecule. The modified surface characteristics may increase a stability of the reagent when the reagent is coupled to the microsphere. The modified surface characteristics may also improve performance of an assay carried out with the microsphere. Another embodiment relates to a microsphere that includes an enolic acid coupled to a polymer core of the microsphere such that the enolic acid modifies surface characteristics of the microsphere. A reagent can be coupled to the microsphere via the enolic acid.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 10, 2012
    Assignee: Luminex Corporation
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker
  • Patent number: 8124943
    Abstract: A method for altering fluorescent emissions of particles includes setting the particles in motion and exposing the moving particles to light such that fluorescent intensities of the particles are lessened isotropically and substantially simultaneously. Another method includes measuring fluorescent emissions of particles, determining the measured fluorescent emissions do not collectively fit within a first predetermined range of fluorescent values, and exposing the particles to one or more incidents of light that are configured to cooperatively alter the fluorescent emissions of the particles to be within a second predetermined range of fluorescent values. An embodiment of an apparatus includes a vessel configured to contain a plurality of particles and a means for setting the particles in motion. The apparatus further includes an illumination subsystem configured to direct light toward the vessel and at a spectral window (i.e.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: February 28, 2012
    Inventors: Ananda G. Lugade, Bruce J. C. Bernard, Kurt D. Hoffacker
  • Publication number: 20120035328
    Abstract: Various methods for forming dyed microspheres are provided. One method includes activating a chemical structure coupled to a dye using heat or light to form a reaction intermediate in the presence of a microsphere. The reaction intermediate covalently attaches to a polymer of the microsphere thereby coupling the dye to the polymer and forming the dyed microsphere. Additional methods are provided for forming a dyed microsphere coupled to a molecule. These methods include dyeing the microspheres as described above in addition to synthesizing the molecule on an outer surface of the dyed microspheres. A population of dyed microspheres is also provided. Each of the dyed microspheres of the population includes a dye attached to a polymer of each of the dyed microspheres by a chemical structure. A coefficient of variation in dye characteristics of the population of dyed microspheres attributable to the dye is less than about 10%.
    Type: Application
    Filed: September 27, 2011
    Publication date: February 9, 2012
    Inventors: Kurt D. Hoffacker, Ananda G. Lugade, Ewald Terpetschnig
  • Patent number: 8088629
    Abstract: Various methods for forming dyed microspheres are provided. One method includes attaching a hydrophilic dye to chemical groups to form a bubble. The bubble includes the chemical groups surrounding the hydrophilic dye and an aqueous solution. The chemical groups are soluble in aqueous and organic solvents. The method also includes disposing the bubble and a microsphere to be dyed in a solvent such that the bubble is incorporated into the microsphere thereby dyeing the microsphere. Another method includes adsorbing a hydrophilic dye on a surface of a hydrophobic polymer core of a microsphere to be dyed thereby dyeing the microsphere. The method also includes attaching chemical groups to the hydrophilic dye. The chemical groups are soluble in aqueous and organic solvents. The chemical groups attached to the hydrophilic dye form an enclosure surrounding the hydrophilic dye and an aqueous solution.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: January 3, 2012
    Assignee: Luminex Corporation
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker
  • Patent number: 8038734
    Abstract: Various methods for forming dyed microspheres are provided. One method includes activating a chemical structure coupled to a dye using heat or light to form a reaction intermediate in the presence of a microsphere. The reaction intermediate covalently attaches to a polymer of the microsphere thereby coupling the dye to the polymer and forming the dyed microsphere. Additional methods are provided for forming a dyed microsphere coupled to a molecule. These methods include dyeing the microspheres as described above in addition to synthesizing the molecule on an outer surface of the dyed microspheres. A population of dyed microspheres is also provided. Each of the dyed microspheres of the population includes a dye attached to a polymer of each of the dyed microspheres by a chemical structure. A coefficient of variation in dye characteristics of the population of dyed microspheres attributable to the dye is less than about 10%.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: October 18, 2011
    Assignee: Luminex Corporation
    Inventors: Kurt D. Hoffacker, Ananda G. Lugade, Ewald Terpetschnig
  • Publication number: 20110086431
    Abstract: Various methods for altering surface characteristics of a microsphere are provided. One method includes coupling an enolic acid to the microsphere to modify the surface characteristics of the microsphere. The surface characteristics may include charge density and/or pKa. A reagent can be coupled to the microsphere via the enolic acid. The reagent may include a biomolecule. The modified surface characteristics may increase a stability of the reagent when the reagent is coupled to the microsphere. The modified surface characteristics may also improve performance of an assay carried out with the microsphere. Another embodiment relates to a microsphere that includes an enolic acid coupled to a polymer core of the microsphere such that the enolic acid modifies surface characteristics of the microsphere. A reagent can be coupled to the microsphere via the enolic acid.
    Type: Application
    Filed: December 16, 2010
    Publication date: April 14, 2011
    Applicant: LUMINEX CORPORATION
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker
  • Patent number: 7867774
    Abstract: Various methods for altering surface characteristics of a microsphere are provided. One method includes coupling an enolic acid to the microsphere to modify the surface characteristics of the microsphere. The surface characteristics may include charge density and/or pKa. A reagent can be coupled to the microsphere via the enolic acid. The reagent may include a biomolecule. The modified surface characteristics may increase a stability of the reagent when the reagent is coupled to the microsphere. The modified surface characteristics may also improve performance of an assay carried out with the microsphere. Another embodiment relates to a microsphere that includes an enolic acid coupled to a polymer core of the microsphere such that the enolic acid modifies surface characteristics of the microsphere. A reagent can be coupled to the microsphere via the enolic acid.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: January 11, 2011
    Assignee: Luminex Corporation
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker
  • Publication number: 20090176255
    Abstract: The present invention relates to methods and systems for labeling, isolating, detecting, and/or enumerating a statistically significant number of biological cells, or other biological analytes of interest, present in a complex matrix sample. The isolation of a biological target of interest from a sample mixture is done by immunomagnetic separation. Upon introduction of the sample within an imaging chamber, the capture complex (biological target-magnetic capture agent) will be attracted by the magnetic field and will lay on the surface of the chamber in the focal plane of the imaging system.
    Type: Application
    Filed: January 7, 2009
    Publication date: July 9, 2009
    Inventors: Bruce J-C Bernard, Kurt D. Hoffacker, Charles J. Collins
  • Patent number: 7385053
    Abstract: The present invention relates to improved covalent coupling of two or more entities such as biomolecules, polymer compositions, organic/inorganic molecules/materials, and the like, including their combinations, through one or more novel reactive groups attached to linker groups of 2-1000 atoms length. The present invention also contemplates the use of bifunctional bridge molecules to link two or more entities, wherein the functional groups of the bridge molecules are the novel reactive groups of the present invention.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: June 10, 2008
    Assignee: Luminex Corporation
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker, Adam J. Jenkins, Karri L. Michael-Ballard, Leonid Patsenker, Ewald Terpetschnig, Veronica D. Thomason, Ralph McDade
  • Publication number: 20080103061
    Abstract: The present invention relates to improved covalent coupling of two or more entities such as biomolecules, polymer compositions, organic/inorganic molecules/materials, and the like, including their combinations, through one or more novel reactive groups attached to linker groups of 2-1000 atoms length. The present invention also contemplates the use of bifunctional bridge molecules to link two or more entities, wherein the functional groups of the bridge molecules are the novel reactive groups of the present invention.
    Type: Application
    Filed: January 9, 2007
    Publication date: May 1, 2008
    Applicant: LUMINEX CORPORATION
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker, Adam J. Jenkins, Karri L. Michael-Ballard, Leonid Patsenker, Ewald Terpetschnig, Veronica D. Thomason, Ralph McDade
  • Patent number: 7241883
    Abstract: The present invention relates to improved covalent coupling of two or more entities such as biomolecules, polymer compositions, organic/inorganic molecules/materials, and the like, including their combinations, through one or more novel reactive groups attached to linker groups of 2–1000 atoms length. The present invention also contemplates the use of bifunctional bridge molecules to link two or more entities, wherein the functional groups of the bridge molecules are the novel reactive groups of the present invention.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: July 10, 2007
    Assignee: Luminex Corporation
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker, Adam J. Jenkins, Karri L. Michael-Ballard, Leonid Patsenker, Ewald Terpetschnig, Veronica D. Thomason, Ralph McDade
  • Publication number: 20040039201
    Abstract: The present invention relates to improved covalent coupling of two or more entities such as biomolecules, polymer compositions, organic/inorganic molecules/materials, and the like, including their combinations, through one or more novel reactive groups attached to linker groups of 2-1000 atoms length. The present invention also contemplates the use of bifunctional bridge molecules to link two or more entities, wherein the functional groups of the bridge molecules are the novel reactive groups of the present invention.
    Type: Application
    Filed: November 14, 2002
    Publication date: February 26, 2004
    Inventors: Ananda G. Lugade, Kurt D. Hoffacker, Adam J. Jenkins, Karri L. Michael-Ballard, Leonid Patsenker, Ewald Terpetchnixg