Patents by Inventor Kurt F. Hirsekorn

Kurt F. Hirsekorn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939417
    Abstract: A heterogeneous procatalyst includes a preformed heterogeneous procatalyst and a metal-ligand complex. The preformed heterogeneous procatalyst includes a titanium species and a magnesium chloride (MgCl2) support. The metal-ligand complex has a structural formula (L)aM(Y)m(XR2)b, where M is a metal cation; each L is a neutral ligand or (?O); each Y is a halide or (C1-C20)alkyl; each XR2 is an anionic ligand in which X is a heteroatom or a heteroatom-containing functional group and R2 is (C1-C20)hydrocarbyl or (C1-C20) heterohydrocarbyl; n is 0, 1, or 2; m is 0-4; and b is 1-6. The metal-ligand complex is overall charge neutral. The heterogeneous procatalyst exhibits improved average molecular weight capability. A catalyst system includes the heterogeneous procatalyst and a cocatalyst. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 26, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Mingzhe Yu, Mehmet Demirors, Andrew T. Heitsch, Jeffrey A. Sims, David Gordon Barton, Kurt F. Hirsekorn, Peter N. Nickias
  • Patent number: 11857935
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(Cl)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson
  • Publication number: 20230235156
    Abstract: Embodiments are directed towards polyolefin compositions including a high molecular weight polyolefin and a low molecular weight polyolefin.
    Type: Application
    Filed: June 4, 2021
    Publication date: July 27, 2023
    Applicants: Dow Global Technologies LLC, PBBPolisur S.R.L.
    Inventors: Alexander Williamson, Shadid Askar, Joel D. Wieliczko, Cornelis F.J. Den Doelder, Mridula Kapur, Kurt F. Hirsekorn, Evelyn Auyeung, Bo Liu, Maria C. Zandueta, John P. O'Brien, Stephanie M. Whited
  • Publication number: 20230151124
    Abstract: Ziegler-Natta (pro)catalyst systems made with an external electron donor compound, methods of synthesis of same, methods of olefin polymerization using same, and polyolefin polymers made thereby. The external electron donor compound is a (multi-alkoxy)silane.
    Type: Application
    Filed: April 22, 2021
    Publication date: May 18, 2023
    Inventors: Linfeng Chen, Jesse C. Beilhart, David T. Gillespie, Mridula Kapur, Ian M. Munro, Eduardo Garcia, Nori Williams, Evelyn Auyeung, Kurt F. Hirsekorn
  • Publication number: 20230151125
    Abstract: Ziegler-Natta (pro)catalyst systems made with an external electron donor compound, methods of synthesis of same, methods of olefin polymerization using same, and polyolefin polymers made thereby. The external electron donor compound is an azaheterocycle.
    Type: Application
    Filed: April 22, 2021
    Publication date: May 18, 2023
    Inventors: Linfeng Chen, Jesse C. Beilhart, Kurt F. Hirsekorn, David T. Gillespie, Ian M. Munro, Eduardo Garcia, Nori Williams, Mridula Kapur, Evelyn Auyeung
  • Patent number: 11542344
    Abstract: The heterogeneous procatalyst of this disclosure includes a titanium species; a hydrocarbon soluble transition metal compound having a structure M(OR1)z; a chlorinating agent having a structure A(Cl)x(R2)3-x, and a magnesium chloride component. M of M(OR1)z is a non-reducing transition metal other than titanium, the non-reducing transition metal being in an oxidation state of +2 or +3. Each R1 is independently (C1-C30)hydrocarbyl or —C(O)R11, where R11 is (C1-C30)hydrocarbyl. Subscript z of M(OR1)z is 2 or 3. Each R1 and R11 may be optionally substituted with one or more than one halogen atoms, or one or more than one —Si(RS)3, where each RS is (C1-C30)hydrocarbyl. A of A(Cl)x(R2)3-x is aluminum or boron; R2 is (C1-C30)hydrocarbyl; and x is 1, 2, or 3; and a magnesium chloride component.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 3, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Kurt F. Hirsekorn, Mehmet Demirors, Teresa P. Karjala
  • Publication number: 20220389137
    Abstract: The catalyst system includes a heterogeneous procatalyst, an electron donor, and a hydrogenation procatalyst. The heterogeneous procatalyst includes a titanium species, an aluminum species, and a magnesium chloride component. The hydrogenation procatalyst has the formula Cp2TiXnTiCp2 or Cp2TiXn. In formula Cp2TiXn, each Cp is a cyclopentadienyl substituted with at least one R1, wherein R1 is (C1-C10)alkyl; and each X is independently monoanionic or neutral, wherein each X is independently (C1-C40)hydrocarbon, (C1-C40)heterohydrocarbon, (C1-C40)hydrocarbyl, (C1—C40)heterohydrocarbyl, or a halogen atom.
    Type: Application
    Filed: July 30, 2020
    Publication date: December 8, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Kurt F. Hirsekorn, Jeffrey A. Simms, David M. Pearson
  • Publication number: 20220275114
    Abstract: The catalyst system includes a heterogeneous procatalyst and a hydrogenation procatalyst. The heterogeneous procatalyst includes a titanium species, an aluminum species, and a magnesium chloride component. The hydrogenation procatalyst has the formula Cp2TiX2, In formula Cp2TiX2, each Cp is a cyclopentadienyl substituted with at least one R1, wherein R1 is (C1-C10)alkyl; and each X is independently a halogen atom.
    Type: Application
    Filed: July 28, 2020
    Publication date: September 1, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Andrew T. Heitsch, Jeffrey A. Sims, David M. Pearson, Kurt F. Hirsekorn
  • Publication number: 20220220292
    Abstract: Embodiments of the present disclosure are specifically related to LLDPE compositions produced from heterogeneous procatalyst compositions and blown and cast films incorporating these LLDPE compositions.
    Type: Application
    Filed: May 29, 2020
    Publication date: July 14, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Kurt F. Hirsekorn, Marlos Giuntini de Oliveira, Gregory J. Brennan, Elva L. Lugo, Yongchao Zeng, Brayden E. Glad, Jon W. Hobson, Linfeng Chen
  • Publication number: 20210221924
    Abstract: A heterogeneous procatalyst includes a preformed heterogeneous procatalyst and a metal-ligand complex. The preformed heterogeneous procatalyst includes a titanium species and a magnesium chloride (MgCl2) support. The metal-ligand complex has a structural formula (L)aM(Y)m(XR2)b, where M is a metal cation; each L is a neutral ligand or (?O); each Y is a halide or (C1-C20)alkyl; each XR2 is an anionic ligand in which X is a heteroatom or a heteroatom-containing functional group and R2 is (C1-C20)hydrocarbyl or (C1-C20) heterohydrocarbyl; n is 0, 1, or 2; m is 0-4; and b is 1-6. The metal-ligand complex is overall charge neutral. The heterogeneous procatalyst exhibits improved average molecular weight capability. A catalyst system includes the heterogeneous procatalyst and a cocatalyst. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Application
    Filed: May 29, 2019
    Publication date: July 22, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Mingzhe Yu, Mehmet Demirors, Andrew T. Heitsch, Jeffrey A. Sims, David Gordon Barton, Kurt F. Hirsekorn, Peter N. Nickias
  • Publication number: 20210205786
    Abstract: A procatalyst including a preformed magnesium chloride catalyst support having a surface area of greater than or equal to 100 m2/g, a titanium containing component, a chlorinating agent, and a hydrocarbon soluble transition metal compound having an oxidation state of greater than or equal to 5+. The hydrocarbon soluble transition metal compound having an oxidation state of greater than or equal to 5+ is not vanadium.
    Type: Application
    Filed: May 29, 2019
    Publication date: July 8, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Kurt F. Hirsekorn, Mehmet Demirors
  • Publication number: 20210205785
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(C)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Application
    Filed: May 23, 2019
    Publication date: July 8, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson
  • Patent number: 10189756
    Abstract: The present invention provides adiabatic plug flow reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors comprise one or more designs that minimize the production of by-products at a desired conversion.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: January 29, 2019
    Assignee: BLUE CUBE IP LLC
    Inventors: Max M. Tirtowidjojo, Hua Bai, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt F. Hirsekorn, Manfred Kokott, William J. Kruper, Thomas U. Luebbe, Thomas J. Parsons, Avani Maulik Patel, Marcus Wobser
  • Patent number: 9512049
    Abstract: Processes for the production of alkenes are provided. The processes make use of methane as a low cost starting material.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 6, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Max Markus Tirtowidjojo, Brien A. Stears, William J. Kruper, Jr., Kurt F. Hirsekorn, Debashis Chakraborty
  • Publication number: 20160347692
    Abstract: The present invention provides adiabatic plug flow reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors comprise one or more designs that minimize the production of by-products at a desired conversion.
    Type: Application
    Filed: July 7, 2016
    Publication date: December 1, 2016
    Inventors: Max M. Tirtowidjojo, Hua Bai, Debashis Chakraborty, Juergen Eiffler, Heinz Groenewald, Kurt F. Hirsekorn, Manfred Kokott, William J. Kruper, Thomas U. Luebbe, Thomas J. Parsons, Avani Maulik Patel, Marcus Wobser
  • Patent number: 9451707
    Abstract: Zero-valent silver compositions include 4-dimethylaminopyridine as stabilizers. The zero-valent silver and the 4-diemthylaminopyridine form stabilized nano-particles in solution. The zero-valent silver compositions may be used as catalysts in the metallization of non-conductive substrates.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 20, 2016
    Inventor: Kurt F. Hirsekorn
  • Patent number: 8927792
    Abstract: Processes for the production of chlorinated and/or fluonnated propenes provide good product yield with advantageous impurity profiles in the crude product. Advantageously, the processes may be conducted at lower temperatures than 600° C., or less than 500° C., so that energy savings are provided, and/or at higher pressures so that high throughputs may also be realized. The use of catalysts or initiators may provide additional enhancements to conversion rates and selectivity, as may adjustments to the molar ratio of the reactants.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: January 6, 2015
    Assignee: Dow AgroSciences, LLC
    Inventors: Max M. Tirtowidjojo, William J. Kruper, Jr., Kurt F. Hirsekorn, Debashis Chakraborty
  • Publication number: 20140171296
    Abstract: Zero-valent silver compositions include 4-dimethylaminopyridine as stabilizers. The zero-valent silver and the 4-diemthylaminopyridine form stabilized nano-particles in solution. The zero-valent silver compositions may be used as catalysts in the metallization of non-conductive substrates.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: Dow Global Technologies LLC
    Inventor: Kurt F. HIRSEKORN
  • Publication number: 20140088329
    Abstract: Processes for the production of chlorinated and/or fluonnated propenes provide good product yield with advantageous impurity profiles in the crude product. Advantageously, the processes may be conducted at lower temperatures than 600° C., or less than 500° C., so that energy savings are provided, and/or at higher pressures so that high throughputs may also be realized. The use of catalysts or initiators may provide additional enhancements to conversion rates and selectivity, as may adjustments to the molar ratio of the reactants.
    Type: Application
    Filed: May 30, 2012
    Publication date: March 27, 2014
    Inventors: Max Tirtowidjojo, William J. Kruper, JR., Kurt F. Hirsekorn, Debashis Chakraborty
  • Patent number: 8581011
    Abstract: The present invention provides one-step processes for the production of chlorinated and/or fluorinated propenes. The processes provide good product yield with low, e.g., less than about 20%, or even less than 10%, concentrations of residues/by-products. Advantageously, the processes may be conducted at low temperatures than 500° C. so that energy savings are provided, and/or at higher pressures so that high throughputs may also be realized. The use of catalysts or initiators may provide additional enhancements to conversion rates and selectivity, as may adjustments to the molar ratio of the reactants.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: November 12, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Max M. Tirtowidjojo, Debashis Chakraborty, Juergen Eiffler, Kurt F. Hirsekorn, William J. Kruper, Jr.