Patents by Inventor Kurt F. Raihn

Kurt F. Raihn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10657305
    Abstract: A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: May 19, 2020
    Assignee: Resonant Inc.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Publication number: 20190392090
    Abstract: A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
    Type: Application
    Filed: May 1, 2019
    Publication date: December 26, 2019
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Patent number: 10437952
    Abstract: A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: October 8, 2019
    Assignee: Resonant Inc.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Patent number: 10366192
    Abstract: Non-transitory computer-readable media to perform a method for designing a multiband filter. The method includes generating an initial circuit structure comprising a desired number and type of circuit elements; generating an initial circuit design by mapping the frequency response requirements of the initial circuit structure into normalized space; generating an acoustic filter circuit design by transferring the initial filter circuit design; generating a pre-optimized circuit design by unmapping one or more circuit elements of the acoustic filter circuit design into real space and introducing parasitic effects; and communicating the pre-optimized circuit design to a filter optimizer that generates a final circuit design comprising a plurality of resonators, wherein a first resonator exhibits a high resonant frequency, a second resonator demonstrates a low resonant frequency and the difference between the low resonant frequency and the high resonant frequency is at least 1.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 30, 2019
    Assignee: Resonant Inc.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 10305447
    Abstract: An acoustic filter comprises a piezoelectric layer; an acoustic resonator structure monolithically disposed on the piezoelectric layer, the acoustic resonator structure including an arrangement of planar interdigitated resonator fingers; and a lumped capacitive structure monolithically disposed on the piezoelectric layer and being electrically coupled to the acoustic resonator structure, the lumped capacitive structure including an arrangement of planar interdigitated capacitive fingers, each of at least one of the interdigitated capacitive fingers having an edge that is entirely continuous.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: May 28, 2019
    Assignee: RESONANT INC.
    Inventors: Kurt F. Raihn, Gregory L. Hey-Shipton
  • Publication number: 20190102490
    Abstract: Non-transitory computer-readable media to perform a method for designing a multiband filter. The method includes generating an initial circuit structure comprising a desired number and type of circuit elements; generating an initial circuit design by mapping the frequency response requirements of the initial circuit structure into normalized space; generating an acoustic filter circuit design by transferring the initial filter circuit design; generating a pre-optimized circuit design by unmapping one or more circuit elements of the acoustic filter circuit design into real space and introducing parasitic effects; and communicating the pre-optimized circuit design to a filter optimizer that generates a final circuit design comprising a plurality of resonators, wherein a first resonator exhibits a high resonant frequency, a second resonator demonstrates a low resonant frequency and the difference between the low resonant frequency and the high resonant frequency is at least 1.
    Type: Application
    Filed: November 13, 2018
    Publication date: April 4, 2019
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 10140406
    Abstract: A multi-band acoustic wave microwave filter, including a signal transmission path having an input and an output; a plurality of nodes disposed along the signal transmission path; a plurality of non-resonant branches respectively coupling one or more nodes to ground, wherein each non-resonant branch comprises at least one non-resonant element; and a plurality of resonant branches that couple one or more nodes to ground and include a plurality of resonators on said branches, wherein the plurality of resonators define a first band and at least one additional band and further wherein the difference between the lowest resonant frequency and the highest resonant frequency of the first band is at least 1.25 times the average separation of the resonators.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: November 27, 2018
    Assignee: Resonant Inc.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20180218093
    Abstract: A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
    Type: Application
    Filed: March 19, 2018
    Publication date: August 2, 2018
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Publication number: 20180189426
    Abstract: A multi-band acoustic wave microwave filter, including a signal transmission path having an input and an output; a plurality of nodes disposed along the signal transmission path; a plurality of non-resonant branches respectively coupling one or more nodes to ground, wherein each non-resonant branch comprises at least one non-resonant element; and a plurality of resonant branches that couple one or more nodes to ground and include a plurality of resonators on said branches, wherein the plurality of resonators define a first band and at least one additional band and further wherein the difference between the lowest resonant frequency and the highest resonant frequency of the first band is at least 1.25 times the average separation of the resonators.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 9959378
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements comprises generating a modeled filter circuit design having a plurality of circuit elements comprising an acoustic resonant element defined by an electrical circuit model that comprises a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss. The method further comprises optimizing the modeled filter circuit design to generate an optimized filter circuit design, comparing a frequency response of the optimized filter circuit design to the frequency response requirements, and constructing the acoustic microwave filter from the optimized filter circuit design based on the comparison.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 1, 2018
    Assignee: RESONANT INC.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Patent number: 9934345
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: April 3, 2018
    Assignee: Resonant Inc.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20170364611
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Application
    Filed: August 10, 2017
    Publication date: December 21, 2017
    Applicant: RESONANT INC.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 9754060
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: September 5, 2017
    Assignee: RESONANT INC.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Publication number: 20170199948
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements comprises generating a modeled filter circuit design having a plurality of circuit elements comprising an acoustic resonant element defined by an electrical circuit model that comprises a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss. The method further comprises optimizing the modeled filter circuit design to generate an optimized filter circuit design, comparing a frequency response of the optimized filter circuit design to the frequency response requirements, and constructing the acoustic microwave filter from the optimized filter circuit design based on the comparison.
    Type: Application
    Filed: March 28, 2017
    Publication date: July 13, 2017
    Applicant: RESONANT INC.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Publication number: 20170179928
    Abstract: An acoustic filter comprises a piezoelectric layer, an acoustic resonator structure monolithically disposed on the piezoelectric layer, a lumped capacitive structure monolithically disposed on the piezoelectric layer and being electrically coupled to the acoustic resonator structure. The acoustic resonator structure comprises an arrangement of planar interdigitated resonator fingers, and each of the interdigitated capacitive fingers has an edge that is entirely continuous. No portion of the edge of each of the interdigitated capacitive fingers is parallel to any portions of edges of the interdigitated resonator fingers. Each of the interdigitated capacitive fingers may comprise a plurality of interdigitated capacitive sub-fingers, or each of the interdigitated capacitive fingers may have a length/width ratio of less than two.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 22, 2017
    Applicant: RESONANT INC.
    Inventors: Kurt F. Raihn, Gregory L. Hey-Shipton
  • Publication number: 20170141751
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements comprises generating a modeled filter circuit design having a plurality of circuit elements comprising an acoustic resonant element defined by an electrical circuit model that comprises a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss. The method further comprises optimizing the modeled filter circuit design to generate an optimized filter circuit design, comparing a frequency response of the optimized filter circuit design to the frequency response requirements, and constructing the acoustic microwave filter from the optimized filter circuit design based on the comparison.
    Type: Application
    Filed: December 1, 2016
    Publication date: May 18, 2017
    Applicant: RESONANT INC.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Patent number: 9654078
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements comprises generating a modeled filter circuit design having a plurality of circuit elements comprising an acoustic resonant element defined by an electrical circuit model that comprises a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss. The method further comprises optimizing the modeled filter circuit design to generate an optimized filter circuit design, comparing a frequency response of the optimized filter circuit design to the frequency response requirements, and constructing the acoustic microwave filter from the optimized filter circuit design based on the comparison.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: May 16, 2017
    Assignee: RESONANT INC.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi
  • Patent number: 9608595
    Abstract: A narrow-band acoustic filter comprises an input and an output, and at least one acoustic resonator pair coupled between the input and the output. Each of the acoustic resonator pair(s) comprises at least one in-line acoustic resonator and in-shunt acoustic resonator that operate together to create a nominal passband. The acoustic filter further comprises at least one capacitive element in parallel with one of the in-line acoustic resonator and the in-shunt acoustic resonator of each of the acoustic resonator pair(s), thereby sharpening one of a lower edge and an upper edge of the nominal passband.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: March 28, 2017
    Assignee: RESONANT INC.
    Inventors: Kurt F. Raihn, Gregory L. Hey-Shipton
  • Publication number: 20170083640
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements.
    Type: Application
    Filed: December 1, 2016
    Publication date: March 23, 2017
    Applicant: RESONANT INC.
    Inventors: Patrick J. Turner, Richard N. Silver, Balam Quitze Andres Willemsen Cortes, Kurt F. Raihn, Neal O. Fenzi, Robert B. Hammond
  • Patent number: 9525393
    Abstract: A method of designing an acoustic microwave filter in accordance with frequency response requirements comprises generating a modeled filter circuit design having a plurality of circuit elements comprising an acoustic resonant element defined by an electrical circuit model that comprises a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss. The method further comprises optimizing the modeled filter circuit design to generate an optimized filter circuit design, comparing a frequency response of the optimized filter circuit design to the frequency response requirements, and constructing the acoustic microwave filter from the optimized filter circuit design based on the comparison.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: December 20, 2016
    Assignee: RESONANT INC.
    Inventors: Kurt F. Raihn, Patrick J. Turner, Neal O. Fenzi