Patents by Inventor Kurt J. Bossart

Kurt J. Bossart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11402426
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3D interconnect (3DI) structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: August 2, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Patent number: 11094684
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 17, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Publication number: 20210041495
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3D interconnect (3DI) structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Patent number: 10852344
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3DI structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 1, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Publication number: 20190341378
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Patent number: 10403618
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: September 3, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Publication number: 20190178933
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3DI structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Publication number: 20190088637
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Publication number: 20170256501
    Abstract: A method of determining a lateral misregistration between levels of a semiconductor structure comprises imaging at least one first alignment mark in a first level of the structure and at least one second alignment mark in a second level of the structure. A digital image of the first and second alignment marks is formed, each of which are defined by a set of points having an x-value and a y-value. The x-values and y-values of points defining the first alignment mark and points defining the second alignment mark are averaged to determine a center of the first alignment mark and a center of the second alignment mark. An x-coordinate and a y-coordinate of the center of the first alignment mark is subtracted from the respective x-coordinate and y-coordinate of the center of the second alignment mark to determine a lateral misregistration between the first level and the second level.
    Type: Application
    Filed: March 7, 2016
    Publication date: September 7, 2017
    Inventors: Yang Chao, Joseph L. Hess, Keith E. Ypma, Kurt J. Bossart
  • Patent number: 9754895
    Abstract: A method of determining a lateral misregistration between levels of a semiconductor structure comprises imaging at least one first alignment mark in a first level of the structure and at least one second alignment mark in a second level of the structure. A digital image of the first and second alignment marks is formed, each of which are defined by a set of points having an x-value and a y-value. The x-values and y-values of points defining the first alignment mark and points defining the second alignment mark are averaged to determine a center of the first alignment mark and a center of the second alignment mark. An x-coordinate and a y-coordinate of the center of the first alignment mark is subtracted from the respective x-coordinate and y-coordinate of the center of the second alignment mark to determine a lateral misregistration between the first level and the second level.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: September 5, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Yang Chao, Joseph L. Hess, Keith E. Ypma, Kurt J. Bossart