Patents by Inventor Kurt J. Casby

Kurt J. Casby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150030913
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Application
    Filed: August 6, 2014
    Publication date: January 29, 2015
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steven M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 8916290
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: December 23, 2014
    Assignee: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 8825160
    Abstract: A complex connector and component within an implantable medical device in which the complex connector is positioned within the spacing footprint of the component to optimize packaging within the device.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 2, 2014
    Assignee: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J Ries, Kurt J Casby, John D Norton, Mark D Breyen, Dan D Erklouts, Brian J Ross, Timothy T Bomstad, Wayne L Appleseth, Michael E Clarke, Jeffrey L Kehn, Scott J Robinson
  • Publication number: 20130266844
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 10, 2013
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Publication number: 20130238071
    Abstract: A complex connector and component within an implantable medical device in which the complex connector is positioned within the spacing footprint of the component to optimize packaging within the device.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 12, 2013
    Applicant: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J. Ries, Kurt J. Casby, John D. Norton, Mark D. Breyen, Dan D. Erklouts, Brian J. Ross, Timothy T. Bomstad, Wayne L. Appleseth, Michael E. Clarke, Jeffrey L. Kehn, Scott J. Robinson
  • Patent number: 8389155
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: March 5, 2013
    Assignee: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 8386044
    Abstract: A complex connector and component within an implantable medical device in which the complex connector is positioned within the spacing footprint of the component to optimize packaging within the device.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 26, 2013
    Assignee: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J. Ries, Kurt J. Casby, John D. Norton, Mark D. Breyen, Dan D. Erklouts, Brian J. Ross, Timothy T. Bomstad, Wayne L. Appleseth, Michael E. Clarke, Jeffrey L. Kehn, Scott J. Robinson
  • Patent number: 8249710
    Abstract: At least one storage component, for example a capacitor or a battery, of an implantable medical device includes two perimeter surfaces. Linear extensions of the two perimeter surfaces define a zone. An electrical connector, which is coupled to the storage component and includes at least one connection point for electrically connecting the storage component with at least one other component within the medical device, is contained within the zone defined by the linear extensions of the two perimeter surfaces.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: August 21, 2012
    Assignee: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J. Ries, Kurt J. Casby, John D. Norton, Mark D. Breyen, Dan D. Erklouts, Brian J. Ross, Timothy T. Bomstad, Wayne L. Appleseth, Michael E. Clarke, Jeffrey L. Kehn, Scott J. Robinson
  • Publication number: 20110318635
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Application
    Filed: June 28, 2011
    Publication date: December 29, 2011
    Applicant: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Frannise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Patent number: 8065006
    Abstract: An electrochemical cell for use in an implantable medical device is presented. The electrochemical cell includes a cover having a first surface and a second surface separated by an outer edge. The electrochemical cell also includes a case having a planar bottom, a side extending upwardly from the planar bottom, and an open top for receiving the cover.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: November 22, 2011
    Assignee: Medtronic, Inc.
    Inventors: Anthony W. Rorvick, Kurt J. Casby, David P. Haas
  • Patent number: 7968226
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a preferably planar, major bottom portion, an open top to receive the cover opposing the bottom portion, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device. The cover and the shallow case being substantially hermetically sealed by a laser weld technique and an insulator member disposed within the case to provide a barrier to incident laser radiation so that during welding radiation does not impinge upon radiation sensitive component(s) disposed within the case.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: June 28, 2011
    Assignee: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Jason T. Papenfuss, William J. Farrell, Kimberly A. Chaffin
  • Publication number: 20100297495
    Abstract: An electrochemical cell of an implantable medical device is provided. The electrochemical cell comprises a conductive case and a cover welded to the case to form a hermetically-sealed housing. A cathode is disposed adjacent to a surface of the case within the hermetically-sealed housing and an anode is disposed within the hermetically-sealed housing. An immobilization system is disposed between the anode and the hermetically-sealed housing. The immobilization system is configured to minimize movement of the anode relative to the housing and is adapted to thermally insulate the anode during fabrication of the hermetically-sealed housing.
    Type: Application
    Filed: August 2, 2010
    Publication date: November 25, 2010
    Inventors: Kurt J. Casby, Anthony W. Rorvick, Christian S. Nielsen, Timothy T. Bomstad, David P. Haas, Angela Rodgers
  • Patent number: 7837743
    Abstract: A high voltage capacitor anode for an implantable medical device is fabricated by sintering, anodizing and heat treating a pressed tantalum powder slug. The sintering may be performed at a temperature between approximately 1500° C. and approximately 1600° C. for a time between approximately 3 minutes and approximately 35 minutes; subsequent anodization may be performed by immersing the slug in an electrolyte at a temperature between approximately 15° C. and approximately 30° C. and then applying a voltage across the slug, the voltage being between approximately 175 Volts and approximately 375 Volts; subsequent heat treating may be performed at a temperature between approximately 400° C. and approximately 460° C. for a time between approximately 50 minutes and approximately 65 minutes. Following heat treating, the anode is reformed by a second anodization.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: November 23, 2010
    Assignee: Medtronic, Inc.
    Inventors: Kevin M. Gaffney, Kurt J. Casby, Joachim Hossick-Schott, John D. Norton, Angela M Rodgers, Karen J Hulting
  • Patent number: 7544220
    Abstract: Embodiments of the invention provide an electrochemical cell including an electrode assembly having one or more of the electrodes being coupled to a feedthrough assembly. The one or more electrodes each include a connection tab. The connection tab extends a distance from separation material between the one or more electrodes (e.g., anode and cathode). The connection tab is provided to contact (e.g., electrically connected) a feedthrough pin of the feedthrough assembly by laser welding. The feedthrough pin with respect to the connection tab is oriented in at least one position lying within a 90 degree orientation on the connection tab. The feedthrough pin is coupled to the connection tab by laser welding.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: June 9, 2009
    Assignee: Medtronic, Inc.
    Inventors: Hailiang Zhao, Kurt J. Casby
  • Patent number: 7539007
    Abstract: Methods and structures are provided for electrically coupling a conductor and a conductive element containing a dissimilar material. A method for electrically coupling a first element containing a first conductive material to a conductor formed of a dissimilar second material includes cladding a second conductive element with the conductor. The second element contains a facilitator material that facilitates the melting of the dissimilar material. A third element containing a third conductive material that is metallurgically compatible with the facilitator material is cladded with a fourth element containing a fourth conductive material that is metallurgically compatible with the first conductive material to form a connector. The fourth element is welded to the first element and the second element is welded to the third element.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: May 26, 2009
    Assignee: Medtronic, Inc.
    Inventors: Hailiang Zhao, Steven J. May, Jeffrey S. Lund, Kurt J. Casby
  • Publication number: 20090078344
    Abstract: A high voltage capacitor anode for an implantable medical device is fabricated by sintering, anodizing and heat treating a pressed tantalum powder slug. The sintering may be performed at a temperature between approximately 1500° C. and approximately 1600° C. for a time between approximately 3 minutes and approximately 35 minutes; subsequent anodization may be performed by immersing the slug in an electrolyte at a temperature between approximately 15° C. and approximately 30° C. and then applying a voltage across the slug, the voltage being between approximately 175 Volts and approximately 375 Volts; subsequent heat treating may be performed at a temperature between approximately 400° C. and approximately 460° C. for a time between approximately 50 minutes and approximately 65 minutes. Following heat treating, the anode is reformed by a second anodization.
    Type: Application
    Filed: September 24, 2007
    Publication date: March 26, 2009
    Inventors: Kevin M. Gaffney, Kurt J. Casby, Joachim Hossick-Schott, John D. Norton, Angela M. Rodgers, Karen J. Hulting
  • Patent number: 7442466
    Abstract: An electrochemical cell, comprising: an encasement including a case having a bottom and a sidewall terminating at an open top and a cover disposed over the case open top and hermetically sealed to the case, the encasement defining an interior space for containing cell components; and an access port defining at least one lumen extending through any of the case bottom, the case sidewall or the cover for receiving a liquid electrolyte, the access port being sealed closed after receiving the liquid electrolyte using a fusion welding method in the presence of the electrolyte.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: October 28, 2008
    Assignee: Medtronic, Inc.
    Inventors: Kurt J. Casby, David P. Haas, Hailiang Zhao
  • Patent number: 7177140
    Abstract: Implantable medical devices (IMDs) and their various components, including flat electrolytic capacitors for same, and methods of making and using same and providing for outgassing of gases released during capacitor charge and discharge cycles are disclosed. A gas vent and liquid electrolyte barrier into the electrolyte fill tube lumen that is used to fill the interior case chamber with electrolyte and then needs to be closed to prevent leakage of electrolyte. The fill port is shaped to comprise a fill port tube having interior and exterior tube ends and a fill port ferrule intermediate the ends of the fill port tube and comprising a fill port ferrule flange extending transversely to and away from the fill port tube.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: February 13, 2007
    Assignee: Medtronic, Inc.
    Inventors: Michael E. Clarke, Thomas P. Miltich, Mark D. Breyen, Joseph F. Lessar, Anthony W. Rorvick, Paul A. Pignato, Kurt J. Casby
  • Patent number: 6881516
    Abstract: A battery having an electrode assembly located in a housing that efficiently utilizes the space available in many implantable medical devices is disclosed. The battery housing provides a cover and a shallow case a planar bottom, an open top to receive the cover, and a plurality of sides being radiused at intersections with each other and with the bottom to allow for the close abutting of other components located within the implantable device while also providing for efficient location of the battery within an arcuate edge of the device.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: April 19, 2005
    Assignee: Medtronic, Inc.
    Inventors: Paul B. Aamodt, Franise D. Bartley, Steve M. Bruesehoff, Kurt J. Casby, David P. Haas, Karl E. Hokanson, Thomas M. Nutzman, Andrew J. Ries, Scott J. Robinson, Randy S. Roles, Sonja K. Somdahl, Walter C. Sunderland, Kimberly A. Chaffin
  • Publication number: 20040240153
    Abstract: A capacitor structure comprises a shallow drawn encasement having first and second major sides and a peripheral wall coupled to first and second major sides. First and second anodes are positioned within encasement proximate the interior surfaces of the first and second major sides respectively. A cathode is positioned within the encasement intermediate the first and second anodes.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 2, 2004
    Inventors: Christian S. Nielsen, Mark Edward Viste, Anthony W. Rorvick, David P. Haas, Joachim Hossick-Schott, John D. Norton, Tim T. Bomstad, Kurt J. Casby