Patents by Inventor Kurt Kramer Schleif

Kurt Kramer Schleif has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200165934
    Abstract: A method for determining an arrival-time of a rotor blade that includes attaching an RF reader to a stationary surface and an RF tag to the rotor blade. Time-of-flight data points are collected via an RF monitoring process that includes: emitting an RF signal from the RF reader and recording a first time; receiving the RF signal at the RF tag and emitting a return RF signal by the RF tag in response thereto; receiving the return RF signal at the RF reader and recording a second time; and determining the time-of-flight data point as being the duration occurring between the first time and the second time. The RF monitoring process is repeated until multiple time-of-flight data points are collected. A minimum time-of-flight is determined from the multiple time-of-flight data points, and the arrival-time for the rotor blade is determined as being a time that corresponds to the minimum time-of-flight.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Applicant: General Electric Company
    Inventors: Kurt Kramer Schleif, Michael Allen Ball, Mario Joseph Arceneaux, Andrew David Ellis, Vincent Carmona
  • Publication number: 20200166432
    Abstract: A method for determining an arrival-time of a rotor blade in a turbine engine that includes the steps of: having an RF reader attached to a stationary surface in the turbine engine; having an RF tag attached to a first region of the rotor blade; having a reference RF tag attached to a rotating structure near the RF tag; in relation to a first revolution of the rotor blade occurring during the operation of the turbine engine, collecting an arrival-time for each of the RF tag and the reference RF tag with the RF reader via an RF monitoring process; comparing the arrival-time of the RF tag to the arrival-time of the reference RF tag to determine an arrival-time test result for the first region of the rotor blade for the first revolution.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Applicant: General Electric Company
    Inventors: Kurt Kramer Schleif, Michael Allen Ball, Mario Joseph Arceneaux, Andrew David Ellis, Vincent Carmona
  • Publication number: 20200166431
    Abstract: A method for determining an arrival-time of a rotor blade that includes attaching an RF reader to a stationary surface and an RF tag to the rotor blade. Strength-of-signal data points are collected via an RF monitoring process that includes: emitting an RF signal from the RF reader; receiving the RF signal at the RF tag and emitting a return RF signal by the RF tag in response thereto; receiving the return RF signal at the RF reader; measuring a signal strength of the return RF signal as received by the RF reader; and determining the strength-of-signal data point as being equal to the measured signal strength. The RF monitoring process is repeated until multiple strength-of-signal data points are collected. A maximum strength-of-signal is determined from the multiple strength-of-signal data points, and the arrival-time for the rotor blade is determined as being a time that corresponds to the maximum strength-of-signal.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Applicant: General Electric Company
    Inventors: Kurt Kramer Schleif, Michael Allen Ball, Mario Joseph Arceneaux, Andrew David Ellis, Vincent Carmona
  • Patent number: 10641720
    Abstract: The present application thus provides a thermal barrier coating spallation detection system for a gas turbine. The thermal barrier coating spallation detection system may include a hot gas path component with a phosphor layer and a thermal barrier coating, a stimulant radiation source, and an optical device such that the optical device directs stimulant radiation at the thermal barrier coating and receives emission radiation. A change in the received emission radiation indicates spallation of the thermal barrier coating.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: May 5, 2020
    Assignee: General Electric Company
    Inventors: Andrew David Ellis, Kurt Kramer Schleif, Zachary John Snider
  • Publication number: 20190376411
    Abstract: In one embodiment, a blade monitoring system is provided. The blade monitoring system includes a processor. The processor is configured to receive a sensor signal from a sensor configured to observe a blade of the turbomachinery, and to derive a measurement based on a marking disposed on the blade of the turbomachinery, wherein the marking comprises a continuous feature. The processor is also configured to display the measurement to an operator of the turbomachinery.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 12, 2019
    Inventors: Michael Allen Ball, Kurt Kramer Schleif
  • Publication number: 20190376410
    Abstract: Systems and methods include a blade monitoring system. The blade monitoring system includes a processor. The processor is configured to receive a sensor signal from a sensor configured to observe a blade of the turbomachinery.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 12, 2019
    Inventors: Kurt Kramer Schleif, Michael Allen Ball
  • Publication number: 20190107499
    Abstract: The present application thus provides a thermal barrier coating spallation detection system for a gas turbine. The thermal barrier coating spallation detection system may include a hot gas path component with a phosphor layer and a thermal barrier coating, a stimulant radiation source, and an optical device such that the optical device directs stimulant radiation at the thermal barrier coating and receives emission radiation. A change in the received emission radiation indicates spallation of the thermal barrier coating.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 11, 2019
    Inventors: Andrew David Ellis, Kurt Kramer Schleif, Zachary John Snider
  • Patent number: 10207356
    Abstract: An extension arm for attachment to a resistance welding hand piece is disclosed. The extension arm may include an elongated main body extending between a first end and a second end. The first end of the elongated main body may be attachable to the hand piece such that the second end of the elongated main body is spaced apart from the hand piece. The extension arm also may include an electrode extending from the second end of the elongated main body. The electrode may be in electrical communication with the hand piece by way of at least one electrical pathway.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: February 19, 2019
    Assignee: General Electric Company
    Inventors: David Howard Syck, Kurt Kramer Schleif
  • Patent number: 10180079
    Abstract: Methods and systems for communicating a signal between a rotating antenna and a plurality of stationary antennae based on an axial displacement of the rotating antenna are provided. In one example, the method can include obtaining one or more measurements of an axial displacement of the rotating antenna from one or more axial displacement sensors. The method can further include determining a selected stationary antenna from the plurality of stationary antennae based at least in part on the measurements of an axial displacement of the rotating antenna. The method can further include activating the selected stationary antenna to communicate a signal with the rotating antenna. The method can further include communicating a signal between the rotating antenna and the selected stationary antenna.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: January 15, 2019
    Assignee: General Electric Company
    Inventors: Kurt Kramer Schleif, Donald W. Shaw
  • Patent number: 10030811
    Abstract: A system for attaching a device to a rotating shaft is provided herein. The system may include a rotating shaft, a telemetry transmitter positioned about the rotating shaft, and a housing positioned about the telemetry transmitter. The telemetry transmitter may be trapped by the housing. The system also may include a connector configured to connect the housing to the rotating shaft.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: July 24, 2018
    Assignee: General Electric Company
    Inventors: Kurt Kramer Schleif, Peter Ping-Liang Sue, Michael Davis Jacobs, Nathan Lee Brown, Mario Joseph Arceneaux, Paul Walter Dausacker
  • Publication number: 20180202312
    Abstract: Methods and systems for communicating a signal between a rotating antenna and a plurality of stationary antennae based on an axial displacement of the rotating antenna are provided. In one example, the method can include obtaining one or more measurements of an axial displacement of the rotating antenna from one or more axial displacement sensors. The method can further include determining a selected stationary antenna from the plurality of stationary antennae based at least in part on the measurements of an axial displacement of the rotating antenna. The method can further include activating the selected stationary antenna to communicate a signal with the rotating antenna. The method can further include communicating a signal between the rotating antenna and the selected stationary antenna.
    Type: Application
    Filed: January 17, 2017
    Publication date: July 19, 2018
    Inventors: Kurt Kramer SCHLEIF, Donald W. SHAW
  • Publication number: 20180017466
    Abstract: A system for attaching a probe to a casing of a gas turbine engine is disclosed. The system may include a probe receptacle attachable to the casing. The probe receptacle may include an internal bore, a bayonet slot, a spring disposed within the internal bore adjacent to the bayonet slot, and a sealing surface within the internal bore. The system also may include a probe attachment assembly disposed about the probe and configured to engage the probe receptacle. The probe attachment assembly may include at least one bayonet positionable within the bayonet slot and a seal positionable adjacent to the sealing surface within the internal bore.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Applicant: General Electric Company
    Inventors: Andrea Booher Kretschmar, Zachary John Snider, Nathan Lee Brown, Kurt Kramer Schleif, Michael Allen Ball
  • Patent number: 9863269
    Abstract: A system for packaging electronic components in a rotatable shaft includes an annular carrier shaft having a first end that is axially spaced from a second end and an inner surface that is radially spaced from an outer surface, and a plurality of transmitter assemblies annularly arranged within the carrier shaft. Each transmitter assembly includes a transmitter housing radially supported within the carrier shaft via a pair of circumferentially spaced rail members. Each transmitter assembly comprises a daughter board that extends laterally and longitudinally across a bottom portion of the transmitter housing and at least one electronic component electrically coupled to the daughter board. The electronic component extends substantially perpendicular to the daughter board within the transmitter housing.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 9, 2018
    Assignee: General Electric Company
    Inventors: Donald W. Shaw, Kurt Kramer Schleif, Zachary John Snider
  • Publication number: 20170342910
    Abstract: The present disclosure is directed to a system for attaching an instrument lead to a gas turbine engine component. The system includes a gas turbine engine component that includes a surface. A first sleeve couples to the surface of the gas turbine engine component. The first sleeve defines a first sleeve passageway extending therethrough. An instrument lead extends through the first sleeve passageway. A first potting material couples the instrument lead to the first sleeve to prevent the instrument lead from moving longitudinally relative to the first sleeve.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Zachary John Snider, Joshua Lee Margolies, Kurt Kramer Schleif
  • Patent number: 9777589
    Abstract: A system for routing rotatable wire bundles which extend from a rotor shaft of a turbomachine includes a plurality of wire bundles which extend outwardly from an inner passage of the rotor shaft of the turbomachine. An annular wire barrel is coupled to an end of the rotor shaft. A plurality of thru-holes is defined within and/or by the wire barrel. The plurality of thru-holes is annularly arranged therein. Each thru-hole extends through an aft wall of the wire barrel and is circumferentially spaced from adjacent thru-holes. Each wire bundle extends individually through a corresponding thru-hole of the plurality of thru-holes.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: October 3, 2017
    Assignee: General Electric Company
    Inventors: Kurt Kramer Schleif, Donald W. Shaw, Zachary John Snider, Mario Joseph Arceneaux
  • Patent number: 9778144
    Abstract: A system for attaching a probe to a casing of a gas turbine engine is disclosed. The system may include a probe receptacle attachable to the casing. The probe receptacle may include an internal bore, a bayonet slot, a spring disposed within the internal bore adjacent to the bayonet slot, and a sealing surface within the internal bore. The system also may include a probe attachment assembly disposed about the probe and configured to engage the probe receptacle. The probe attachment assembly may include at least one bayonet positionable within the bayonet slot and a seal positionable adjacent to the sealing surface within the internal bore.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: October 3, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kurt Kramer Schleif, Zachary John Snider, Nathan Lee Brown, Andrea Booher Kretschmar, Michael Allen Ball
  • Patent number: 9748675
    Abstract: A splicer device is disclosed herein. The splicer device includes a main body having an internal passage formed between a first end of the main body and a second end of the main body. The first end of the main body is configured to receive at least one first wire, and the second end of the main body is configured to receive at least one second wire. A window is disposed within the main body and in communication with the internal passage between the first end of the main body and the second end of the main body for accessing and splicing the at least one first wire and the at least one second wire.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: August 29, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: David Howard Syck, Gregory Quentin Brown, Kurt Kramer Schleif, Andrea Booher Kretschmar
  • Patent number: 9735530
    Abstract: An apparatus for determining axial spacing between conductive rings of a slip ring assembly includes a signal generator that generates an incident signal, a plurality of conductive rings axially spaced along a shaft where the plurality of conductive rings includes a first conductive ring and a second conductive ring that are axially spaced at a first axial distance. The shaft and the plurality of conductive rings are submerged in a bath of a liquid or encased in an epoxy. A first twisted wire pair is electronically coupled at to the signal generator and to inputs of the first and second conductive rings. A second twisted wire pair is electronically coupled at one end to outputs of the first and second conductive rings. A method for determining axial spacing between conductive rings of a slip ring assembly is also disclosed.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: August 15, 2017
    Assignee: General Electric Company
    Inventors: Mario Joseph Arceneaux, Kurt Kramer Schleif, Donald W. Shaw
  • Patent number: 9719816
    Abstract: A fitting for positioning a probe in a hot gas path within a casing of a gas turbine engine is disclosed herein. The fitting includes a main body attachable to the casing opposite the hot gas path. The main body includes an internal bore and one or more cooling holes in communication with the internal bore. A compliant seal is positionable within the internal bore. In addition, a follower is positionable within the internal bore adjacent to the compliant seal. Moreover, the fitting includes a fastener configured to mate with the main body. In this manner, the follower deforms the compliant seal about the probe within the main body to secure and seal the probe within the main body.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: August 1, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kurt Kramer Schleif, Zachary John Snider
  • Patent number: 9698579
    Abstract: A method for routing wires from a rotor shaft of a turbomachine includes routing a plurality of wire bundles through an end portion of the rotor shaft and into an annular extension shaft which is coupled to the end portion of the rotor shaft, threading each wire bundle through a corresponding thru-hole of a plurality of thru-holes defined in an annular wire barrel, inserting the wire barrel into the extension shaft and fixedly connecting the wire barrel to the extension shaft.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: July 4, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kurt Kramer Schleif, Donald W. Shaw, Zachary John Snider, Mario Joseph Arceneaux