Patents by Inventor Kurt R. Gehlsen

Kurt R. Gehlsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10329572
    Abstract: Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., ?-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1 protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: June 25, 2019
    Assignee: Research Corporation Technologies, Inc.
    Inventors: Kurt R. Gehlsen, Thomas G. Chappell
  • Patent number: 10113164
    Abstract: This disclosure relates to novel Pichia pastoris display systems, e.g., display systems featuring the Pichia pastoris strains (such as SuperMan5) with substantially homogeneous N-glycans displayed on cell surface proteins.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: October 30, 2018
    Assignee: Research Corporation Technologies, Inc.
    Inventors: Kurt R. Gehlsen, Thomas G. Chappell
  • Patent number: 9976131
    Abstract: The present application relates to modified T cell epitopes derived from fungal ribotoxins, including ?-sarcin, clavin, gigantin, mitogillin, and restrictocin, as well as modified ribotoxin molecules comprising one or more of the modified epitopes. The modified ribotoxin molecules inhibit protein synthesis, like the wild type ribotoxins, but exhibit reduced immunogenicity as compared to the corresponding wild type ribotoxin. Another aspect relates to a fusion protein which comprises a modified ribotoxin fused or conjugated or otherwise linked to a targeting molecule that is effective for binding a target of interest. Another aspect relates to the use of the modified ribotoxin or fusion protein for treating or managing a disease or condition.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: May 22, 2018
    Assignee: RESEARCH CORPORATION TECHNOLOGIES, INC.
    Inventors: Kurt R. Gehlsen, Timothy David Jones, Francis Joseph Carr, Arron Hearn
  • Patent number: 9803210
    Abstract: This disclosure features fusion proteins comprising a base protein linked to or incorporated in a CH2 scaffold of IgG. The CH2 scaffold can derive from the macaque CH2 domain of IgG. The fusion proteins can effectively bind a single or multiple targets, and can be engineered to regulate effector functions as desired. The fusion proteins can have an increased serum half-life, solubility, stability, protease resistance, and/or expression as compared to the scaffolds alone and/or as compared to the base protein alone. This disclosure also features fusion proteins comprising a base protein, a CH2 scaffold and a discrete polyethylene glycol (dPEG) linked to the scaffold via a serine, tyrosine, cysteine, lysine, or a glycosylation site of the scaffold. This disclosure additionally features scaffolds linked to a discrete polyethylene glycol (dPEG) via a serine, tyrosine, cysteine, or lysine of the scaffolds or a glycosylation site of the scaffold.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: October 31, 2017
    Assignee: Research Corporation Technologies, Inc.
    Inventors: David Bramhill, Kurt R. Gehlsen
  • Publication number: 20170306032
    Abstract: The present disclosure is directed to a modified isolated immunoglobulin CH2 domain that specifically binds to an extracellular region of an EphA2 receptor, wherein the amino acid sequence of the modified immunoglobulin CH2 domain includes at least one amino acid substitution, addition or deletion in comparison to a wild type immunoglobulin CH2 domain amino acid sequence, wherein the wild type immunoglobulin CH2 domain amino acid sequence includes SEQ ID NO:1 or SEQ ID NO:2. Heterologous immunoconjugates including fusion proteins and pharmaceutical compositions including the modified isolated immunoglobulin CH2 domain are also disclosed. In addition, methods of treating a disease associated with EphA2 overexpression and methods for killing a target cell expressing EphA2 receptors using the modified isolated immunoglobulin CH2 domain are provided.
    Type: Application
    Filed: October 23, 2015
    Publication date: October 26, 2017
    Inventor: Kurt R. Gehlsen
  • Publication number: 20170298369
    Abstract: This disclosure features fusion proteins comprising a base protein linked to or incorporated in a CH2 scaffold of IgG. The CH2 scaffold can derive from the macaque CH2 domain of IgG. The fusion proteins can effectively bind a single or multiple targets, and can be engineered to regulate effector functions as desired. The fusion proteins can have an increased serum half-life, solubility, stability, protease resistance, and/or expression as compared to the scaffolds alone and/or as compared to the base protein alone. This disclosure also features fusion proteins comprising a base protein, a CH2 scaffold and a discrete polyethylene glycol (dPEG) linked to the scaffold via a serine, tyrosine, cysteine, lysine, or a glycosylation site of the scaffold. This disclosure additionally features scaffolds linked to a discrete polyethylene glycol (dPEG) via a serine, tyrosine, cysteine, or lysine of the scaffolds or a glycosylation site of the scaffold.
    Type: Application
    Filed: February 8, 2013
    Publication date: October 19, 2017
    Applicant: RESEARCH CORPORATION TECHNOLOGIES, INC.
    Inventors: David BRAMHILL, Kurt R. Gehlsen
  • Publication number: 20170204387
    Abstract: The present application relates to modified T cell epitopes derived from fungal ribotoxins, including ?-sarcin, clavin, gigantin, mitogillin, and restrictocin, as well as modified ribotoxin molecules comprising one or more of the modified epitopes. The modified ribotoxin molecules inhibit protein synthesis, like the wild type ribotoxins, but exhibit reduced immunogenicity as compared to the corresponding wild type ribotoxin. Another aspect relates to a fusion protein which comprises a modified ribotoxin fused or conjugated or otherwise linked to a targeting molecule that is effective for binding a target of interest. Another aspect relates to the use of the modified ribotoxin or fusion protein for treating or managing a disease or condition.
    Type: Application
    Filed: February 13, 2017
    Publication date: July 20, 2017
    Inventors: Kurt R. Gehlsen, Timothy David Jones, Francis Joseph Carr, Arron Hearn
  • Publication number: 20170166910
    Abstract: Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., ?-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
    Type: Application
    Filed: February 28, 2017
    Publication date: June 15, 2017
    Applicant: Research Corporation Technologies, Inc.
    Inventors: Kurt R. Gehlsen, Thomas G. Chappell
  • Patent number: 9617550
    Abstract: Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., ?-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1 protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 11, 2017
    Assignee: Research Corporation Technologies, Inc.
    Inventors: Kurt R. Gehlsen, Thomas G. Chappell
  • Patent number: 9603911
    Abstract: The present application relates to modified T cell epitopes derived from fungal ribotoxins, including a-sarcin, clavin, gigantin, mitogillin, and restrictocin, as well as modified ribotoxin molecules comprising one or more of the modified epitopes. The modified ribotoxin molecules inhibit protein synthesis, like the wild type ribotoxins, but exhibit reduced immunogenicity as compared to the corresponding wild type ribotoxin. Another aspect relates to a fusion protein which comprises a modified ribotoxin fused or conjugated or otherwise linked to a targeting molecule that is effective for binding a target of interest. Another aspect relates to the use of the modified ribotoxin or fusion protein for treating or managing a disease or condition.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: March 28, 2017
    Assignee: RESEARCH CORPORATION TECHNOLOGIES, INC.
    Inventors: Kurt R. Gehlsen, Timothy David Jones, Francis Joseph Carr, Arron Hearn
  • Publication number: 20170002346
    Abstract: This disclosure relates to novel Pichia pastoris display systems, e.g., display systems featuring the Pichia pastoris strains (such as SuperMan5) with substantially homogeneous N-glycans displayed on cell surface proteins.
    Type: Application
    Filed: December 16, 2014
    Publication date: January 5, 2017
    Inventors: Kurt R. GEHLSEN, Thomas G. CHAPPELL
  • Publication number: 20160106819
    Abstract: The present application relates to modified T cell epitopes derived from fungal ribotoxins, including a-sarcin, clavin, gigantin, mitogillin, and restrictocin, as well as modified ribotoxin molecules comprising one or more of the modified epitopes. The modified ribotoxin molecules inhibit protein synthesis, like the wild type ribotoxins, but exhibit reduced immunogenicity as compared to the corresponding wild type ribotoxin. Another aspect relates to a fusion protein which comprises a modified ribotoxin fused or conjugated or otherwise linked to a targeting molecule that is effective for binding a target of interest. Another aspect relates to the use of the modified ribotoxin or fusion protein for treating or managing a disease or condition.
    Type: Application
    Filed: March 3, 2014
    Publication date: April 21, 2016
    Inventors: Kurt R. Gehlsen, Timothy David Jones, Francis Joseph Carr, Arron Hearn
  • Publication number: 20150267212
    Abstract: Disclosed herein are novel Pichia pastoris strains for expression of exogenous proteins with substantially homogeneous N-glycans. The strains are genetically engineered to include a mutant OCH1 allele which is transcribed into an mRNA coding for a mutant OCH1 gene product (i.e., ?-1,6-mannosyltransferase, or “OCH1 protein”). The mutant OCH1 protein contains a catalytic domain substantially identical to that of the wild type OCH1 protein, but lacks an N-terminal sequence necessary to target the OCH1 protein to the Golgi apparatus. The strains disclosed herein are robust, stable, and transformable, and the mutant OCH1 allele and the ability to produce substantially homogeneous N-glycans are maintained for generations after rounds of freezing and thawing and after subsequent transformations.
    Type: Application
    Filed: October 23, 2013
    Publication date: September 24, 2015
    Applicant: RESEARCH CORPORATION TECHNOLOGIES, INC.
    Inventors: Kurt R. Gehlsen, Thomas G. Chappell
  • Publication number: 20130189247
    Abstract: The present invention relate to small binding proteins comprising two or more protein domains derived from a CH2 domain or CH2-like domain of an immunoglobulin in which the CH2 domains have been altered to recognize one or more target proteins and, in some embodiments, retain, or have modified, certain secondary effector functions.
    Type: Application
    Filed: February 11, 2011
    Publication date: July 25, 2013
    Applicant: RESEARCH CORPORATION TECHNOLOGIES, INC.
    Inventors: David Bramhill, Kurt R. Gehlsen, Dimiter S. Dimitrov, Rui Gong
  • Patent number: 6893633
    Abstract: Disclosed is a method of promoting the maturation of monocytes comprising the administration of a reactive oxygen species (ROS) inhibitor or scavenger and at least one monocyte maturation-promoting agent. A composition for promoting the maturation of monocytes is likewise disclosed. The pharmaceutical composition includes a compound effective to promote the maturation of monocytes and a ROS inhibitor or scavenger combined in a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: May 17, 2005
    Assignee: Maxim Pharmaceuticals, Inc.
    Inventors: Kristoffer Hellstrand, Svante H. Hermodsson, Kurt R. Gehlsen
  • Patent number: 6821510
    Abstract: Disclosed is a method of promoting the maturation of monocytes comprising the administration of a reactive oxygen species (ROS) inhibitor or scavenger and at least one monocyte maturation-promoting agent. A composition for promoting the maturation of monocytes is likewise disclosed. The pharmaceutical composition includes a compound effective to promote the maturation of monocytes and a ROS inhibitor or scavenger combined in a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: November 23, 2004
    Assignee: Maxim Pharmaceuticals, Inc.
    Inventors: Kristoffer Hellstrand, Svante H. Hermodsson, Kurt R. Gehlsen
  • Publication number: 20040219153
    Abstract: The present invention relates to methods of treating cancer in which histamine is administered in conjunction with other cancer therapies. The cancer therapy includes surgery, radiation, immunotherapy, the administration of an agent which enhances the humoral immune response of the patient or any combination thereof.
    Type: Application
    Filed: June 2, 2004
    Publication date: November 4, 2004
    Inventors: Kurt R. Gehlsen, Kristoffer Hellstrand, Svante Hermodsson
  • Publication number: 20040191239
    Abstract: The present invention relates to a method for preventing and/or reducing cellular and tissue damage caused by reactive oxygen metabolites (ROMs) released by phagocytic or endothelial cells in response to various disease states or pathologies. The methods of the present invention are useful in preventing and treating a variety of disease states or pathological situations in which ROMs are produced and released. The methods of the present invention contemplate reducing ROM-mediated damage by reducing the production and release of ROMs.
    Type: Application
    Filed: April 7, 2004
    Publication date: September 30, 2004
    Inventors: Kristoffer Hellstrand, Svante Hermodsson, Kurt R. Gehlsen
  • Patent number: 6790440
    Abstract: Disclosed is a method of promoting the maturation of monocytes comprising the administration of a reactive oxygen species (ROS) inhibitor or scavenger and at least one monocyte maturation-promoting agent. A composition for promoting the maturation of monocytes is likewise disclosed. The pharmaceutical composition includes a compound effective to promote the maturation of monocytes and a ROS inhibitor or scavenger combined in a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: September 14, 2004
    Assignee: Maxim Pharmaceuticals, Inc.
    Inventors: Kristoffer Hellstrand, Svante H. Hermodsson, Kurt R. Gehlsen
  • Publication number: 20040120926
    Abstract: Compositions and methods for treating a variety of conditions in which a reactive oxygen metabolite (ROM) inhibitor or scavenger is administered alone or in conjunction with additional agents. Such conditions include, cancer, viral diseases, and inflammatory diseases, for example.
    Type: Application
    Filed: October 7, 2003
    Publication date: June 24, 2004
    Inventors: Kristoffer Hellstrand, Svante Hermodsson, Kurt R. Gehlsen