Patents by Inventor Kurt Zimmermann

Kurt Zimmermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964945
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade and (inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 23, 2024
    Assignee: Arvinas Operations, Inc.
    Inventors: Andrew P. Crew, Keith R. Hornberger, Lawrence B. Snyder, Kurt Zimmermann, Jing Wang, Hanqing Dong
  • Publication number: 20230331681
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade (and inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Application
    Filed: June 22, 2023
    Publication date: October 19, 2023
    Inventors: Michael BERLIN, Andrew P. CREW, Craig M. CREWS, Hanqing DONG, Keith R. HORNBERGER, Lawrence B. SNYDER, Jing WANG, Kurt ZIMMERMANN
  • Publication number: 20230203030
    Abstract: The present invention relates to bifunctional compounds, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of targeted polypeptides.
    Type: Application
    Filed: September 13, 2022
    Publication date: June 29, 2023
    Inventors: Andrew P. Crew, Craig M. Crews, Xin Chen, Hanqing Dong, Caterina Ferraro, Yimin Qian, Kam Siu, Jing Wang, Meizhong Jin, Michael Berlin, Kurt Zimmermann, Lawrence Snyder
  • Publication number: 20230183209
    Abstract: The description relates to cereblon E3 ligase binding compounds, including bifunctional compounds comprising the same, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present disclosure. In particular, the description provides compounds, which contain on one end a ligand which binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. Compounds can be synthesized that exhibit a broad range of pharmacological activities consistent with the degradation/inhibition of targeted polypeptides of nearly any type.
    Type: Application
    Filed: December 12, 2022
    Publication date: June 15, 2023
    Applicant: Arvinas Operations, Inc.
    Inventors: Andrew P. CREW, Michael BERLIN, Keith R. HORNBERGER, Lawrence B. SNYDER, Jing WANG, Yimin QIAN, Hanqing DONG, Kurt ZIMMERMANN
  • Publication number: 20230082997
    Abstract: The description relates to cereblon E3 ligase binding compounds, including bifunctional compounds comprising the same, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present disclosure. In particular, the description provides compounds, which contain on one end a ligand which binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. Compounds can be synthesized that exhibit a broad range of pharmacological activities consistent with the degradation/inhibition of targeted polypeptides of nearly any type.
    Type: Application
    Filed: January 7, 2022
    Publication date: March 16, 2023
    Inventors: Michael BERLIN, Andrew P. CREW, Craig M. CREWS, Hanqing DONG, Keith R. HORNBERGER, Yimin QIAN, Lawrence B. SNYDER, Jing WANG, Kurt ZIMMERMANN
  • Publication number: 20230084249
    Abstract: Bifunctional compounds, which find utility as modulators of androgen receptor (AR), are described herein. In particular, the bifunctional compounds of the present disclosure contain on one end a moiety that binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds AR, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The bifunctional compounds of the present disclosure exhibit a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aberrant regulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Application
    Filed: October 20, 2021
    Publication date: March 16, 2023
    Inventors: Michael Berlin, Andrew P. Crew, Hanqing Dong, Keith R. Hornberger, Lawrence B. Snyder, Jing Wang, Kurt Zimmermann
  • Patent number: 11512083
    Abstract: The present invention relates to bifunctional compounds, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of targeted polypeptides.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: November 29, 2022
    Assignees: Arvinas Operations, Inc., Yale University
    Inventors: Andrew P. Crew, Craig M. Crews, Xin Chen, Hanqing Dong, Caterina Ferraro, Yimin Qian, Kam Siu, Jing Wang, Meizhong Jin, Michael Berlin, Kurt Zimmermann
  • Patent number: 11427548
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade (and inhibit) Androgen Receptor. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds Androgen Receptor such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 30, 2022
    Assignee: ARVINAS OPERATIONS, INC.
    Inventors: Andrew P. Crew, Hanqing Dong, Jing Wang, Xin Chen, Yimin Qian, Kurt Zimmermann, Michael Berlin, Lawrence Snyder
  • Publication number: 20220259154
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade (and inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Application
    Filed: December 1, 2021
    Publication date: August 18, 2022
    Inventors: Michael BERLIN, Andrew P. CREW, Craig M. CREWS, Hanqing DONG, Keith R. HORNBERGER, Lawrence B. SNYDER, Jing WANG, Kurt ZIMMERMANN
  • Publication number: 20220031803
    Abstract: A composition comprising an antimicrobial polypeptide and at least one antibiotic.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 3, 2022
    Inventors: Kurt ZIMMERMANN, Christian AUERBACH, Florian GUNZER
  • Patent number: 11236051
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade (and inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 1, 2022
    Assignee: Arvinas Operations, Inc.
    Inventors: Andrew P. Crew, Kurt Zimmermann, Hanqing Dong, Lawrence B. Snyder
  • Publication number: 20210315856
    Abstract: The present disclosure is based on the surprising and unexpected discovery that a ligand molecule with certain characteristics is able to bind to two protein molecules simultaneously and recruit them to form a transient or stable protein-protein interaction complex. The protein-protein interaction and other cross-domain interactions gained in this process contribute additional stabilization energy to the complex beyond the combination of the binary binding energies, and therefore, largely increase the binding potency of the ligand. Accordingly, the present disclosure provides a Protein-Protein Interaction Inducing Technology (PPIIT), which includes a method to design and identify the tripartite or bifunctional compounds and use such compounds to induce protein-protein interactions in various contexts. The present disclosure also provides a composition for the purpose of inducing protein-protein interactions.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Inventors: Andrew P. Crew, Hanging Dong, Brain Hamman, Taavi K. Neklesa, Yimin Qian, Jing Wang, Kurt Zimmermann
  • Publication number: 20210220475
    Abstract: The present invention relates to bifunctional compounds, which find utility to degrade and (inhibit) TBK1. In particular, the present invention is directed to compounds, which contain on one end an E3 ubiquitin ligase binding moiety which binds to an E3 ubiquitin ligase and on the other end a moiety which binds TBK1 such that TBK1 is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of TBK1. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of TBK1.
    Type: Application
    Filed: March 4, 2021
    Publication date: July 22, 2021
    Inventors: Andrew P. Crew, Kurt Zimmermann, Jing Wang, Craig M. Crews, Saul Jaime-Figueroa, George Burslem
  • Publication number: 20210171470
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade and (inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Application
    Filed: May 29, 2020
    Publication date: June 10, 2021
    Inventors: Andrew P. Crew, Keith R. Hornberger, Lawrence B. Snyder, Kurt Zimmermann, Jing Wang, Michael Berlin, Craig M. Crews, Hanqing Dong
  • Patent number: 10994015
    Abstract: The present disclosure relates to bifunctional compounds, which find utility as modulators of receptor tyrosine kinase (RTK) proteins. In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a ligand which binds to an E3 ubiquitin ligase and on the other end a moiety which binds a target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effectuate ubiquitination, and therefore, degradation (and inhibition) of the target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 4, 2021
    Assignees: ARVINAS OPERATIONS, INC., YALE UNIVERSITY
    Inventors: Andrew P. Crew, Kurt Zimmermann, Jing Wang, Craig M. Crews, Saul Jaime-Figueroa, George Burslem
  • Patent number: 10933103
    Abstract: Disclosed is a composition comprising an effective amount of a mixture of inactivated Escherichia coli and Enterococcus faecalis as well as pharmaceutically acceptable excipients and/or carriers for use in the treatment, supportive treatment or prevention of dermatologic conditions and diseases.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: March 2, 2021
    Assignee: SymbioGruppe GmbH & Co. KG
    Inventors: Hans-Jorg Muller, Thomas Michael Schmidts, Kurt Zimmermann, Volker Rusch
  • Publication number: 20210040044
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade and (inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Application
    Filed: August 28, 2020
    Publication date: February 11, 2021
    Inventors: Andrew P. Crew, Keith R. Hornberger, Lawrence B. Snyder, Kurt Zimmermann, Jing Wang, Michael Berlin, Hanqing Dong
  • Publication number: 20210009528
    Abstract: The present disclosure relates to bifunctional compounds, which find utility to degrade (and inhibit) Androgen Receptor. In particular, the present disclosure is directed to compounds, which contain on one end a cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds Androgen Receptor, such that Androgen Receptor is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of Androgen Receptor. The present disclosure exhibits a broad range of pharmacological activities associated with compounds according to the present disclosure, consistent with the degradation/inhibition of Androgen Receptor.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 14, 2021
    Inventors: Andrew P. CREW, Keith R. HORNBERGER, Kurt ZIMMERMANN, Jing WANG, Michael BERLIN, Craig M. CREWS, Hanqing DONG, Lawrence B. SNYDER
  • Publication number: 20200392131
    Abstract: The present invention relates to bifunctional compounds, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of targeted polypeptides.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 17, 2020
    Inventors: Andrew P. Crew, Craig M. Crews, Xin Chen, Hanqing Dong, Caterina Ferraro, Yimin Qian, Kam Siu, Jing Wang, Meizhong Jin, Michael Berlin, Kurt Zimmermann, Lawrence Snyder
  • Patent number: 10730870
    Abstract: The present invention relates to bifunctional compounds, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and/or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation/inhibition of targeted polypeptides.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: August 4, 2020
    Assignees: ARVINAS OPERATIONS, INC., YALE UNIVERSITY
    Inventors: Andrew P. Crew, Craig M. Crews, Xin Chen, Hanqing Dong, Caterina Ferraro, Yimin Qian, Kam Siu, Jing Wang, Meizhong Jin, Michael Berlin, Kurt Zimmermann, Lawrence Snyder