Patents by Inventor Kwang-Hyun Chang

Kwang-Hyun Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951130
    Abstract: The present invention relates to an antigen-binding molecule comprising a heavy chain variable region comprising a heavy-chain complementarity-determining region 1 (HCDR1) comprising an amino acid sequence represented by Sequence No. 1, an HCDR2 comprising an amino acid sequence represented by Sequence No. 2, and an HCDR3 comprising an amino acid sequence represented by Sequence No. 3; a light-chain variable region comprising a light-chain complementarity-determining region 1 (LCDR1) comprising an amino acid sequence represented by Sequence No. 4, an LCDR2 comprising an amino acid sequence represented by Sequence No. 5, and an LCDR3 comprising an amino acid sequence represented by Sequence No. 6; wherein the antigen-binding molecule is a T cell receptor (TCR); and to a cell line expressing the same.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: April 9, 2024
    Assignee: Eutilex Co., Ltd.
    Inventors: Byoung S. Kwon, Young Ho Kim, Kwang Hee Kim, Ji Won Chung, Young Gyoon Chang, Bo Rim Yi, Jung Yun Lee, Seung Hyun Lee, Sun Woo Im, Jin Kyung Choi, Hyun Tae Son, Eun Hye Yoo
  • Patent number: 10141579
    Abstract: Provided are a metal oxide-carbon nanomaterial composite, a method of preparing the metal oxide-carbon nanomaterial composite, a catalyst, a method of preparing the catalyst, and a catalyst layer that includes the catalyst and that is used for fuel cell electrodes. The metal oxide-carbon nanomaterial composite includes a metal oxide particle having a specific surface area of 5 square meters per gram (m2/g) or less, and a carbon nanomaterial formed on a surface of the metal oxide particle. The catalyst includes a metal oxide-carbon nanomaterial composite in which a carbon nanomaterial is formed on a metal oxide particle, and an active metal particle formed on a surface of the carbon nanomaterial.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 27, 2018
    Assignee: Korea Institute of Energy Research
    Inventors: Sung Dae Yim, Seong Hun Cho, Kwang Hyun Chang, Eun Ja Lim, Tae Hyun Yang, Young Jun Sohn, Byung Chan Bae, Seok Hee Park, Gu Gon Park, Chang Soo Kim, Seung Gon Kim, Min Jin Kim
  • Patent number: 10081002
    Abstract: The present invention relates to a continuous manufacturing apparatus for a carbon nanotube having gas separation units and a continuous manufacturing method for a carbon nanotube using the same. According to the present invention, the present invention has an effect to provide the continuous manufacturing apparatus of the carbon nanotube and continuous manufacturing method using the same, in which it makes possible to perform a rapid processing; has excellent productivity and excellent conversion rate of carbon source; can significantly reduce the cost of production; can reduce energy consumption because a reactor size can be decreased as compared with capacity; and a gas separation unit that not generate a waste gas.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: September 25, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon
  • Patent number: 10029974
    Abstract: This invention relates to a method of continuously preparing acrylic acid and an apparatus using the same, the method including: (1) subjecting a feed including propane, oxygen, water vapor and carbon dioxide to partial oxidation using a catalyst, thus obtaining an acrylic acid-containing mixed gas, (2) separating the acrylic acid-containing mixed gas into an acrylic acid-containing solution and a gas byproduct, (3) separating an acrylic acid solution from the separated acrylic acid-containing solution, and (4) recycling the separated gas byproduct into the feed.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: July 24, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Kwang-Hyun Chang, Young-Chang Byun
  • Publication number: 20170297994
    Abstract: This invention relates to a method of continuously preparing acrylic acid and an apparatus using the same, the method including: (1) subjecting a feed including propane, oxygen, water vapor and carbon dioxide to partial oxidation using a catalyst, thus obtaining an acrylic acid-containing mixed gas, (2) separating the acrylic acid-containing mixed gas into an acrylic acid-containing solution and a gas byproduct, (3) separating an acrylic acid solution from the separated acrylic acid-containing solution, and (4) recycling the separated gas byproduct into the feed.
    Type: Application
    Filed: October 7, 2015
    Publication date: October 19, 2017
    Applicant: LG CHEM, LTD.
    Inventors: Kwang-Hyun CHANG, Young-Chang BYUN
  • Patent number: 9782738
    Abstract: Disclosed are an apparatus and method for continuously producing carbon nanotubes, the apparatus includes i) a reactor to synthesize carbon nanotubes, ii) a separator to separate a mixed gas from the carbon nanotubes transferred from the reactor, iii) a filter to remove all or part of one or more component gases from the separated mixed gas, and iv) a recirculation pipe to recirculate the filtered mixed gas to the reactor for carbon nanotubes.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: October 10, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon
  • Patent number: 9687802
    Abstract: Disclosed are an apparatus and method for continuously producing carbon nanotubes. More specifically, disclosed are an apparatus for continuously producing carbon nanotubes including i) a reactor to synthesize carbon nanotubes, ii) a separator to separate a mixed gas from the carbon nanotubes transferred from the reactor, iii) a filter to remove all or part of one or more component gases from the separated mixed gas, and iv) a recirculation pipe to recirculate the filtered mixed gas to the reactor for carbon nanotubes.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: June 27, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon
  • Patent number: 9630160
    Abstract: Disclosed are an apparatus and method for continuously producing carbon nanotubes. More specifically, disclosed are an apparatus for continuously producing carbon nanotubes including i) a reactor to synthesize carbon nanotubes, ii) a separator to separate a mixed gas from the carbon nanotubes transferred from the reactor, iii) a filter to remove all or part of one or more component gases from the separated mixed gas, and iv) a recirculation pipe to recirculate the filtered mixed gas to the reactor for carbon nanotubes. Advantageously, the apparatus and method for continuously producing carbon nanotubes enable rapid processing, exhibit superior productivity and excellent conversion rate of a carbon source, significantly reduce production costs, reduce energy consumption due to decrease in reactor size relative to capacity, and generate little or no waste gas and are thus environmentally friendly.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: April 25, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon
  • Publication number: 20170069916
    Abstract: Provided are a metal oxide-carbon nanomaterial composite, a method of preparing the metal oxide-carbon nanomaterial composite, a catalyst, a method of preparing the catalyst, and a catalyst layer that includes the catalyst and that is used for fuel cell electrodes. The metal oxide-carbon nanomaterial composite includes a metal oxide particle having a specific surface area of 5 square meters per gram (m2/g) or less, and a carbon nanomaterial formed on a surface of the metal oxide particle. The catalyst includes a metal oxide-carbon nanomaterial composite in which a carbon nanomaterial is formed on a metal oxide particle, and an active metal particle formed on a surface of the carbon nanomaterial.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 9, 2017
    Inventors: Sung Dae Yim, Seong Hun Cho, Kwang Hyun Chang, Eun Ja Lim, Tae Hyun Yang, Young Jun Sohn, Byung Chan Bae, Seok Hee Park, Gu Gon Park, Chang Soo Kim, Seung Gon Kim, Min Jin Kim
  • Publication number: 20150202585
    Abstract: The present invention relates to a continuous manufacturing apparatus for a carbon nanotube having gas separation units and a continuous manufacturing method for a carbon nanotube using the same. According to the present invention, the present invention has an effect to provide the continuous manufacturing apparatus of the carbon nanotube and continuous manufacturing method using the same, in which it makes possible to perform a rapid processing; has excellent productivity and excellent conversion rate of carbon source; can significantly reduce the cost of production; can reduce energy consumption because a reactor size can be decreased as compared with capacity; and a gas separation unit that not generate a waste gas.
    Type: Application
    Filed: March 23, 2015
    Publication date: July 23, 2015
    Inventors: Kwang-Hyun CHANG, Jin-Do Kim, Kwang-Woo Yoon
  • Patent number: 9017635
    Abstract: The present invention relates to a continuous manufacturing apparatus for a carbon nanotube having gas separation units and a continuous manufacturing method for a carbon nanotube using the same. According to the present invention, the present invention has an effect to provide the continuous manufacturing apparatus of the carbon nanotube and continuous manufacturing method using the same, in which it makes possible to perform a rapid processing; has excellent productivity and excellent conversion rate of carbon source; can significantly reduce the cost of production; can reduce energy consumption because a reactor size can be decreased as compared with capacity; and a gas separation unit that not generate a waste gas.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 28, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon
  • Publication number: 20140127123
    Abstract: Disclosed are an apparatus and method for continuously producing carbon nanotubes. More specifically, disclosed are an apparatus for continuously producing carbon nanotubes including i) a reactor to synthesize carbon nanotubes, ii) a separator to separate a mixed gas from the carbon nanotubes transferred from the reactor, iii) a filter to remove all or part of one or more component gases from the separated mixed gas, and iv) a recirculation pipe to recirculate the filtered mixed gas to the reactor for carbon nanotubes. Advantageously, the apparatus and method for continuously producing carbon nanotubes enable rapid processing, exhibit superior productivity and excellent conversion rate of a carbon source, significantly reduce production costs, reduce energy consumption due to decrease in reactor size relative to capacity, and generate little or no waste gas and are thus environmentally friendly.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Kwang-Hyun CHANG, Jin-Do KIM, Kwang-Woo YOON
  • Publication number: 20130336875
    Abstract: Disclosed are an apparatus and method for continuously producing carbon nanotubes. More specifically, disclosed are an apparatus for continuously producing carbon nanotubes including i) a reactor to synthesize carbon nanotubes, ii) a separator to separate a mixed gas from the carbon nanotubes transferred from the reactor, iii) a filter to remove all or part of one or more component gases from the separated mixed gas, and iv) a recirculation pipe to recirculate the filtered mixed gas to the reactor for carbon nanotubes. Advantageously, the apparatus and method for continuously producing carbon nanotubes enable rapid processing, exhibit superior productivity and excellent conversion rate of a carbon source, significantly reduce production costs, reduce energy consumption due to decrease in reactor size relative to capacity, and generate little or no waste gas and are thus environmentally friendly.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Kwang-Hyun CHANG, Jin-Do Kim, Kwang-Woo Yoon
  • Publication number: 20130315813
    Abstract: Disclosed are an apparatus and method for continuously producing carbon nanotubes. More specifically, disclosed are an apparatus for continuously producing carbon nanotubes including i) a reactor to synthesize carbon nanotubes, ii) a separator to separate a mixed gas from the carbon nanotubes transferred from the reactor, iii) a filter to remove all or part of one or more component gases from the separated mixed gas, and iv) a recirculation pipe to recirculate the filtered mixed gas to the reactor for carbon nanotubes. Advantageously, the apparatus and method for continuously producing carbon nanotubes enable rapid processing, exhibit superior productivity and excellent conversion rate of a carbon source, significantly reduce production costs, reduce energy consumption due to decrease in reactor size relative to capacity, and generate little or no waste gas and are thus environmentally friendly.
    Type: Application
    Filed: August 19, 2011
    Publication date: November 28, 2013
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon
  • Publication number: 20130302238
    Abstract: The present invention relates to a continuous manufacturing apparatus for a carbon nanotube having gas separation units and a continuous manufacturing method for a carbon nanotube using the same, and more specifically, to a continuous manufacturing apparatus for a carbon nanotube having gas separation units and a continuous manufacturing method for a carbon nanotube using the same, in which the apparatus includes i) a reactor for synthesizing the carbon nanotube; ii) a separator for separating a mixed gas and the carbon nanotube transferred from the reactor; iii) a gas separation unit including more than one polymer membrane for removing in part or in whole of more than one component gas from the mixed gas separated; and iv) a recirculation pipe for recirculating the mixed gas without in part or in whole of the component gas to the reactor of carbon nanotube.
    Type: Application
    Filed: August 25, 2011
    Publication date: November 14, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon