Patents by Inventor Kwang-Myung Lee

Kwang-Myung Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8361274
    Abstract: A vacuum processing apparatus is provided with: a vacuum processing tank; a first gas introduction section that is constructed such that a first processing gas in a radical state is introduced into the vacuum processing tank and is guided to a semiconductor wafer; and a second gas introduction section that is constructed such that a second processing gas that reacts with the first processing gas is introduced into the vacuum processing tank and is guided to the semiconductor wafer. The second gas introduction section has two shower nozzles provided at positions on either side of an introduction pipe provided for the first gas introduction section. According to this vacuum processing apparatus, high speed processing of a number of processing objects can be achieved. Moreover, the in-plane uniformity of the processing objects after processing can be ensured.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: January 29, 2013
    Assignees: Samsung Electronics Co., Ltd, Ulvac, Inc.
    Inventors: Kwang-Myung Lee, Ki-Young Yun, Il-Kyoung Kim, Sung-Wook Park, Seung-Ki Chae, No-Hyun Huh, Jae-Wook Kim, Jae-Hyuck An, Woo-Seok Kim, Myeong-Jin Kim, Kyoung-Ho Jang, Shinji Yanagisawa, Kengo Tsutsumi, Seiichi Takahashi
  • Patent number: 8083507
    Abstract: Provided is a vacuum pump having a rotation body cleaning unit. The vacuum pump includes a case provided with rotation guide holes at opposite end parts. The case includes a rotation body placed inside the case and including a rotation shaft having opposite ends rotatably supported by the rotation guide holes and a number of lobes provided in the rotation shaft at predetermined intervals. Further, a cleaning part is supported by the case and placed in a space between the lobes and cleans the rotation body.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: December 27, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tea-Jin Park, Seung-Ki Chae, Kwang-Myung Lee, Sang-Gon Lee
  • Publication number: 20100206519
    Abstract: A temperature control system for semiconductor manufacturing equipment is disclosed, which can properly cool a process chamber adopted in the semiconductor manufacturing equipment such as a wafer etching device. The temperature control system for semiconductor manufacturing equipment includes a thermocline for cooling heat transfer fluid accommodated therein through a heat exchange with a heat exchanger and storing heat energy, a supply line for controlling the temperature of the heat transfer fluid in the thermocline through a heater and supplying the heat transfer fluid with a proper temperature to a process device, a recovery line for forwarding the heat transfer fluid having passed through the process device to the thermocline, and a bypass for forwarding a part of the heat transfer fluid passing through the recovery line to the supply line through the heater.
    Type: Application
    Filed: November 9, 2007
    Publication date: August 19, 2010
    Applicants: GLOBAL STANDARD TECHNOLOGY CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Bong-Hyun Cho, Chang-Woo Eun, Hyun-Seok Choi, Sang-Gon Lee, Kwang-Myung Lee, In-Joo Lee, Yong-Ho Choi, Seong-Kuk An, Choul-Oh Park
  • Patent number: 7497963
    Abstract: In this etching method, since an etching gas is introduced before introduction of free radicals into a processing chamber, the etching gas has been adsorbed on the surface of substrates when the free radicals are introduced. Accordingly, the free radicals react with the etching gas adsorbed on the surface of the substrates, and the reaction proceeds uniformly on the surface of the substrate. As a result, nonuniform etching does not occur on the surface of the substrate. Moreover, since the reaction between the etching gas and the free radicals occurs on the surface of the substrate, an intermediate product produced according to the reaction between the etching gas and the free radicals reacts with an etching object promptly. Therefore, the intermediate product is not exhausted from the processing chamber 12 excessively, and hence the etching efficiency is high.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: March 3, 2009
    Assignees: Samsung Electronics Co., Ltd., ULVAC, Inc.
    Inventors: Kwang-Myung Lee, Ki-Young Yun, Seung-Ki Chae, No-Hyun Huh, Wan-Goo Hwang, Jung-Hyun Hwang, Shinji Yanagisawa, Kengo Tsutsumi, Seiichi Takahashi
  • Publication number: 20080226485
    Abstract: Provided is a vacuum pump having a rotation body cleaning unit. The vacuum pump includes a case provided with rotation guide holes at opposite end parts. The case includes a rotation body placed inside the case and including a rotation shaft having opposite ends rotatably supported by the rotation guide holes and a number of lobes provided in the rotation shaft at predetermined intervals. Further, a cleaning part is supported by the case and placed in a space between the lobes and cleans the rotation body.
    Type: Application
    Filed: March 17, 2008
    Publication date: September 18, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tea-Jin PARK, Seung-Ki CHAE, Kwang-Myung LEE, Sang-Gon LEE
  • Publication number: 20070181062
    Abstract: A semiconductor device manufacturing apparatus comprises a chamber for processing a wafer, a wafer loading unit configured to load a wafer into and out of the chamber, a heating unit coupled with a chamber wall and a temperature measuring unit located between the chamber wall and the wafer loading unit and apart from the chamber wall.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 9, 2007
    Inventors: Il-Kyoung Kim, Kwang-Myung Lee, No-Hyun Huh, Wan-Goo Hwang, Ki-Young Yun
  • Publication number: 20050150861
    Abstract: A vacuum processing apparatus is provided with: a vacuum processing tank; a first gas introduction section that is constructed such that a first processing gas in a radical state is introduced into the vacuum processing tank and is guided to a semiconductor wafer; and a second gas introduction section that is constructed such that a second processing gas that reacts with the first processing gas is introduced into the vacuum processing tank and is guided to the semiconductor wafer. The second gas introduction section has two shower nozzles provided at positions on either side of an introduction pipe provided for the first gas introduction section. According to this vacuum processing apparatus, high speed processing of a number of processing objects can be achieved. Moreover, the in-plane uniformity of the processing objects after processing can be ensured.
    Type: Application
    Filed: January 10, 2005
    Publication date: July 14, 2005
    Inventors: Kwang-Myung Lee, Ki-Young Yun, Il-Kyoung Kim, Sung-Wook Park, Seung-Ki Chae, No-Hyun Huh, Jae-Wook Kim, Jae-Hyuck An, Woo-Seok Kim, Myeong-Jin Kim, Kyoung-Ho Jang, Shinji Yanagisawa, Kengo Tsutsumi, Seiichi Takahashi
  • Publication number: 20050153553
    Abstract: In this etching method, since an etching gas is introduced before introduction of free radicals into a processing chamber, the etching gas has been adsorbed on the surface of substrates when the free radicals are introduced. Accordingly, the free radicals react with the etching gas adsorbed on the surface of the substrates, and the reaction proceeds uniformly on the surface of the substrate. As a result, nonuniform etching does not occur on the surface of the substrate. Moreover, since the reaction between the etching gas and the free radicals occurs on the surface of the substrate, an intermediate product produced according to the reaction between the etching gas and the free radicals reacts with an etching object promptly. Therefore, the intermediate product is not exhausted from the processing chamber 12 excessively, and hence the etching efficiency is high.
    Type: Application
    Filed: January 10, 2005
    Publication date: July 14, 2005
    Inventors: Kwang-Myung Lee, Ki-Young Yun, Seung-Ki Chae, No-Hyun Huh, Wan-Goo Hwang, Jung-Hyun Hwang, Shinji Yanagisawa, Kengo Tsutsumi, Seiichi Takahashi
  • Publication number: 20050130451
    Abstract: Disclosed are a method and an apparatus for processing a wafer in manufacturing a semiconductor device and a method and an apparatus for etching a material formed on the wafer, wherein first and second cooling parts adjust an ambient temperature near a plurality of wafers to a first temperature, the wafers are processed by introducing a reaction gas at the first temperature, then, a heating part rapidly raises the temperature of the atmosphere near the wafers from the first temperature to the second temperature to partially separate by-products produced during the processing, the second temperature is maintained to separate most of the by-products from the wafers, and the processing steps are implemented in-situ within the same space. Accordingly, a native oxide layer formed on several wafers can be etched and the reaction by-products can be removed in-situ in the same chamber so productivity is improved.
    Type: Application
    Filed: February 7, 2005
    Publication date: June 16, 2005
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwang-Myung Lee, Mikio Takagi, Jae-Hyuk An, Seung-Ki Chae, Jea-Wook Kim
  • Publication number: 20050087139
    Abstract: An antenna includes branches having substantially identical shapes. The branches are symmetrically disposed about a central point and extend along at least two concentric patterns whose geometric centers coincide with the central point. The branches each include pattern-forming portions that lie entirely within the concentric patterns, and at least one connecting portion extending between and connecting the pattern-forming portions. Input/output terminals for allowing a voltage to be impressed across the branches are provided at ends of each of the branches.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 28, 2005
    Inventors: Woo-Seok Kim, Seung-Ki Chae, Do-Young Kam, Kwang-Myung Lee, Jai-Hyung Won, Jai-Kwang Shin, Jae-Joon Oh, Sang-Jean Jeon
  • Patent number: 6869500
    Abstract: Disclosed are a method and an apparatus for processing a wafer in manufacturing a semiconductor device and a method and an apparatus for etching a material formed on the wafer, wherein first and second cooling parts adjust an ambient temperature near a plurality of wafers to a first temperature, the wafers are processed by introducing a reaction gas at the first temperature, then, a heating part rapidly raises the temperature of the atmosphere near the wafers from the first temperature to the second temperature to partially separate by-products produced during the processing, the second temperature is maintained to separate most of the by-products from the wafers, and the processing steps are implemented in-situ within the same space. Accordingly, a native oxide layer formed on several wafers can be etched and the reaction by-products can be removed in-situ in the same chamber so productivity is improved.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: March 22, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Myung Lee, Mikio Takagi, Jae-Hyuk An, Seung-Ki Chae, Jea-Wook Kim
  • Publication number: 20030060030
    Abstract: Disclosed are a method and an apparatus for processing a wafer in manufacturing a semiconductor device and a method and an apparatus for etching a material formed on the wafer, wherein first and second cooling parts adjust an ambient temperature near a plurality of wafers to a first temperature, the wafers are processed by introducing a reaction gas at the first temperature, then, a heating part rapidly raises the temperature of the atmosphere near the wafers from the first temperature to the second temperature to partially separate by-products produced during the processing, the second temperature is maintained to separate most of the by-products from the wafers, and the processing steps are implemented in-situ within the same space. Accordingly, a native oxide layer formed on several wafers can be etched and the reaction by-products can be removed in-situ in the same chamber so productivity is improved.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 27, 2003
    Inventors: Kwang-Myung Lee, Mikio Takagi, Jae-Hyuk An, Seung-Ki Chae, Jea-Wook Kim