Patents by Inventor Kwang Yong Kang

Kwang Yong Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7791924
    Abstract: Provided are a memory device that undergoes no structural phase change, maintains a uniform thin film, and can perform a high-speed switching operation, and a method of operating the same. The memory device includes a substrate, an abrupt MIT material layer, and a plurality of electrodes. The abrupt MIT material layer is disposed on the substrate and undergoes an abrupt metal-insulator transition by an energy change between electrons. The plurality of electrodes are brought into contact with the abrupt MIT material layer and are melted by heat to form a conductive path on the abrupt MIT material layer.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: September 7, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Bong-Jun Kim, Kwang-Yong Kang, Sun-Jin Yun, Yong-Wook Lee, Byung-Gyu Chae
  • Patent number: 7773494
    Abstract: Provided is an optical disk drive adapter comprising: a first rotating portion disposed at the center of an optical disk drive and installing a turntable on which a standard optical disk is mounted; a second rotating portion disposed beside the first rotating portion and installing a turntable on which a subminiature optical disk is mounted; a force transmitting portion disposed between the first rotating portion and the second rotating portion and transmitting a rotary force between the first rotating portion and the second rotating portion; and a housing supporting the entire optical disk drive adapter so that the first rotating portion, the second rotating portion, and the force transmitting portions can be rotated on their axes while maintaining their overall shape. Accordingly, without an additional subminiature optical disk drive, a subminiature optical disk can be driven using a conventional standard optical disk drive.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: August 10, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mun Cheol Paek, Kwang Yong Kang
  • Publication number: 20100193824
    Abstract: Provided is a 2-terminal semiconductor device that uses an abrupt MIT semiconductor material layer. The 2-terminal semiconductor device includes a first electrode layer, an abrupt MIT semiconductor organic or inorganic material layer having an energy gap less than 2 eV and holes in a hole level disposed on the first electrode layer, and a second electrode layer disposed on the abrupt MIT semiconductor organic or inorganic material layer. An abrupt MIT is generated in the abrupt MIT semiconductor material layer by a field applied between the first electrode layer and the second electrode layer.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Inventors: Hyun Tak KIM, Doo Hyeb Youn, Byung Gyu Chae, Kwang Yong Kang, Yong Sik Lim, Gyungock Kim, Sunglyul Maeng, Seong Hyun Kim
  • Patent number: 7767501
    Abstract: The abrupt metal-insulator transition device includes: an abrupt metal insulator transition material layer including an energy gap of less than or equal to 2 eV and holes within a hole level; and two electrodes contacting the abrupt metal-insulator transition material layer. Here, each of the two electrodes is formed by thermally treating a stack layer of a first layer formed on the abrupt metal-insulator transition material layer and comprising Ni or Cr, a second layer formed on the first layer and comprising In, a third layer formed on the second layer and comprising Mo or W, and a fourth layer formed on the third layer and comprising Au.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: August 3, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Doo-Hyeb Youn, Hyun-Tak Kim, Byung-Gyu Chae, Sung-Lyul Maeng, Kwang-Yong Kang
  • Patent number: 7755100
    Abstract: There is provided a packaging apparatus of a terahertz device, the apparatus including: a terahertz device having an active region at which terahertz wave is radiated or detected; a device substrate mounting the terahertz device whose active region is positioned at an opening region formed at the center of the device substrate, and electrically connecting the terahertz device and an external terminal to each other; a ball lens block arranged and fixed to an upper part of the terahertz device; and upper and lower cases receiving the device substrate mounted with the terahertz device therein and opening region vertical upper and lower portions of the active region of the terahertz device.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 13, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Kuk Choi, Kwang Yong Kang, Mun Cheol Paek, Min Hwan Kwak
  • Publication number: 20100155605
    Abstract: Provided are a terahertz wave transmission and reception (Tx/Rx) module package and method of manufacturing the same. The complete and separate terahertz wave Tx/Rx module package is implemented by simply aligning a silicon ball lens, a photoconductive antenna and a focusing lens, and thus facilitates generation or measurement of a terahertz wave. The terahertz wave Tx/Rx module package and method can remarkably reduce time and cost required to build a terahertz wave generation and measurement system, and simplify and miniaturize the terahertz wave generation and measurement system. In addition, characteristics of a terahertz wave generated by the photoconductive antenna can be simply measured. Furthermore, the terahertz wave Tx/Rx module package can be stored and transported with a photoconductive antenna, a silicon ball lens and a focusing lens kept aligned as they are, and also it is possible to minimize pollution of terahertz wave devices caused by surroundings.
    Type: Application
    Filed: August 7, 2009
    Publication date: June 24, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sang Kuk CHOI, Kwang Yong KANG, Mun Cheol Paek, Min Hwan KWAK, Seung Beom KANG
  • Publication number: 20100149640
    Abstract: Provided is a tunable diffraction grating apparatus including: a diffraction grating portion having a diffraction grating with an linearly variable grating interval, the diffraction grating being formed of an elastic member; a drive portion connected to the diffraction grating portion and applying a force to the diffraction grating portion to vary the grating interval; and a controller for controlling the drive portion to adjust the grating interval depending on a specific wavelength input from the exterior. Therefore, the tunable diffraction grating apparatus can vary a grating interval of a diffraction grating using an elastic material so that a signal of a frequency bandwidth of THz can also be used. In addition, it is possible to simplify structure of the apparatus to reduce the manufacturing cost thereof.
    Type: Application
    Filed: July 7, 2009
    Publication date: June 17, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Mun Cheol Paek, Kwang Yong Kang, Sang Kuk Choi, Seung Hwan Lee, Se Young Jeong
  • Publication number: 20100134372
    Abstract: Provided is a folded dipole antenna including a meander line formed on a photoconductive substrate, characterized by an input impedance of several k?, which is much higher than that of a conventional dipole antenna, due to optimization of a horizontal length, a line interval, a width, and a line number of the meander line. Accordingly, use of the folded dipole antenna greatly improves an impedance matching characteristic between the antenna and a photomixer having an output impedance of 10 k? or more, and accordingly an output of a THz continuous wave.
    Type: Application
    Filed: July 7, 2009
    Publication date: June 3, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Han Cheol Ryu, Kwang Yong Kang, Min Hwan Kwak, Sung Il Kim
  • Publication number: 20100134936
    Abstract: Provided are an electrical and/or electronic system protecting circuit using an abrupt metal-insulator transition (MIT) device which can effectively remove high-frequency noise with a voltage greater than a rated standard voltage received via a power line or a signal line of an electrical and/or electronic system, and the electrical and/or electronic system including the electrical and/or electronic system protecting circuit. The abrupt MIT device of the electrical and/or electronic system protecting circuit abrupt is connected in parallel to the electrical and/or electronic system to be protected from the noise. The electrical and/or electronic system protecting circuit bypasses toward the abrupt MIT device most of the noise current generated when the voltage greater than the rated standard voltage is applied, thereby protecting the electrical and/or electronic system.
    Type: Application
    Filed: February 17, 2006
    Publication date: June 3, 2010
    Applicant: Electronics and Telecommunications Research Instit
    Inventors: Hyun-Tak Kim, Kwang-Yong Kang, Byung-Gyu Chae, Bong-jun Kim, Sun-jin Yun, Yong-wook Lee, Gyung-Ock Kim, Doo-Hyeb Youn, Jung-Wook Lim
  • Patent number: 7728327
    Abstract: Provided is a 2-terminal semiconductor device that uses an abrupt MIT semiconductor material layer. The 2-terminal semiconductor device includes a first electrode layer, an abrupt MIT semiconductor organic or inorganic material layer having an energy gap less than 2eV and holes in a hole level disposed on the first electrode layer, and a second electrode layer disposed on the abrupt MIT semiconductor organic or inorganic material layer. An abrupt MIT is generated in the abrupt MIT semiconductor material layer by a field applied between the first electrode layer and the second electrode layer.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: June 1, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Tak Kim, Doo Hyeb Youn, Byung Gyu Chae, Kwang Yong Kang, Yong Sik Lim, Gyungock Kim, Sunglyul Maeng, Seong Hyun Kim
  • Publication number: 20100092183
    Abstract: A frequency tunable terahertz continuous wave generator controls the number of feedbacks of an optical signal output from an optical intensity modulator by adding a feedback loop between input and output terminals of the optical intensity modulator, thereby simply tuning a frequency of a terahertz continuous wave.
    Type: Application
    Filed: June 30, 2009
    Publication date: April 15, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sungil Kim, Kwang Yong Kang, Mun Cheol Paek, Sang Kuk Choi, Min Hwan Kwak, Han Cheol Ryu
  • Patent number: 7692516
    Abstract: Provided are a phase shifter with a photonic band gap (PBG) structure using a ferroelectric thin film. The phase shifter includes a microstrip transmission line acting as a microwave input/output line and a plurality of tunable capacitors arranged in the microstrip transmission line at regular intervals. Electrodes disposed on a substrate apply DC voltages to the plurality of tunable capacitors. Radio frequency (RF) chokes and quarter wavelength radial-stubs are connected between the electrodes and the microstrip transmission line in order to prevent high frequency signals from flowing into a DC bias terminal. A plurality of PBGS are periodically arrayed on a ground plane of the substrate.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: April 6, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Tae Kim, Han-Cheol Ryu, Min-Hwan Kwak, Seung-Eon Moon, Su-Jae Lee, Kwang-Yong Kang
  • Patent number: 7684023
    Abstract: An apparatus and method for generating a terahertz (THz) wave are provided. The apparatus comprises: an fiber optic probe injecting an optical wave transmitted through an optical fiber into a device under test (DUT); a driving oscillator generating and injecting an electrical wave into the DUT; and the device under test (DUT) generating a THz wave using the produced optical and electrical waves.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: March 23, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kwang Yong Kang, Mun Cheol Paek, Doo Hyeb Youn, Min Hwan Kwak, Suk Gil Han
  • Publication number: 20090315724
    Abstract: Provided are an abrupt MIT device with variable MIT temperature or voltage, an MIT sensor using the abrupt MIT device, and an alarm apparatus and a secondary battery anti-explosion circuit including the MIT sensor The MIT device includes an abrupt MIT layer undergoing an abrupt MIT at a transition temperature or a transition voltage and at least two electrode layers contacting the abrupt MIT layer. The transition temperature or the transition voltage varies with at least one of factors including a voltage applied to the electrode layers, a temperature, an electromagnetic wave, a pressure, and a gas concentration that affect the abrupt MIT layer. The MIT sensor is a temperature sensor, an infrared sensor, an image sensor, a pressure sensor, a gas-concentration sensor, or a switch. The alarm apparatus includes the MIT sensor and an alarm-signaling unit connected in series with the MIT sensor.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 24, 2009
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyun-Tak Kim, Bong-Jun Kim, Byung-Gyu Chae, Sun-Jin Yun, Sung-Youl Choi, Yong-Wook Lee, JungWook Lim, Sang-Kuk Choi, Kwang-Yong Kang
  • Publication number: 20090286140
    Abstract: Provided is a lithium secondary battery including a discharge unit capable of delaying or preventing a battery explosion. The lithium secondary battery includes a discharge unit disposed parallel to a battery body. The discharge unit includes a first electrode connected to a positive electrode of the battery body, a second electrode connected to a negative electrode of the battery body, and a discharge material film, disposed between the first electrode and the second electrode, inducing a abrupt discharge above a predetermined temperature. The discharge material film, e.g., a abrupt metal-insulator transition (MIT) material film can induce a abrupt discharge, thereby preventing or delaying a battery explosion.
    Type: Application
    Filed: January 12, 2006
    Publication date: November 19, 2009
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyun-Tak Kim, Doo-Hyeb Youn, Byung-Gyu Chae, Kwang-Yong Kang, Bong-Jun Kim, Yong-Wook Lee, Sun-Jin Yun, Jung-Wook Lim, Gyung-Ock Kim, Sung-Lyul Maeng
  • Publication number: 20090230428
    Abstract: The abrupt metal-insulator transition device includes: an abrupt metal insulator transition material layer including an energy gap of less than or equal to 2 eV and holes within a hole level; and two electrodes contacting the abrupt metal-insulator transition material layer. Here, each of the two electrodes is formed by thermally treating a stack layer of a first layer formed on the abrupt metal-insulator transition material layer and comprising Ni or Cr, a second layer formed on the first layer and comprising In, a third layer formed on the second layer and comprising Mo or W, and a fourth layer formed on the third layer and comprising Au.
    Type: Application
    Filed: December 5, 2005
    Publication date: September 17, 2009
    Inventors: Doo-Hyeb Youn, Hyun-Tak Kim, Byung-Gyu Chae, Sung-Lyul Maeng, Kwang-Yong Kang
  • Patent number: 7580336
    Abstract: An optical head has a beam input/output coupler on a planar waveguide and other parts including: a light transmitting element emitting a beam; a planar waveguide formed on a substrate and receiving the beam oscillated from the light transmitting element; a beam input/output coupler integrated as a thin film on a portion of the planar waveguide and receiving the beam through the planar waveguide to transmit the beam vertically toward a disc positioned above the planar waveguide or transmitting the beam reflected from the disc through the planar waveguide; and light receiving elements receiving the beam propagated to the planar waveguide through the beam input/output coupler.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: August 25, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dong Woo Suh, Yong Woo Park, Mun Cheol Paek, Ho Jun Ryu, Hee Sook Chung, Kwang Yong Kang
  • Publication number: 20090152699
    Abstract: There is provided a packaging apparatus of a terahertz device, the apparatus including: a terahertz device having an active region at which terahertz wave is radiated or detected; a device substrate mounting the terahertz device whose active region is positioned at an opening region formed at the center of the device substrate, and electrically connecting the terahertz device and an external terminal to each other; a ball lens block arranged and fixed to an upper part of the terahertz device; and upper and lower cases receiving the device substrate mounted with the terahertz device therein and opening region vertical upper and lower portions of the active region of the terahertz device.
    Type: Application
    Filed: July 21, 2008
    Publication date: June 18, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Sang Kuk CHOI, Kwang Yong Kang, Mun Cheol Paek, Min Hwan Kwak
  • Publication number: 20090141387
    Abstract: A nanoprobe-based heating apparatus includes a nanoprobe, a heating unit, a gap control unit, and a support unit. The nanoprobe has a tip forming at an end of the nanoprobe, and the tip applies heat to a magnetic recording bit of a recording medium. The heating unit heats the nanoprobe. The gap control unit controls a gap between the nanoprobe and the recording medium. The support unit supports the nanoprobe, the heating unit, and the gap control unit. The nanoprobe-based heating apparatus is installed at a magnetic recording head of a magnetic hard disk drive to be able to heat an ultra-fine region of a recording medium very rapidly by applying heat together with a magnetic field.
    Type: Application
    Filed: August 28, 2008
    Publication date: June 4, 2009
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Mun Cheol PAEK, Kwang Yong Kang
  • Patent number: 7540004
    Abstract: An ultra-small optical/magnetic head actuator includes: a swing arm movable in a horizontal direction (tracking direction) and a vertical direction (focusing direction) and having mounted thereon a head for reading and writing information on a disk. A tracking actuator moves the swing arm in the horizontal direction (tracking direction) and a pivot hinge adjusts a radius of rotation of the swing arm and guides the movement of the swing arm in the tracking direction. A focusing actuator moves the swing arm in the vertical direction (focusing direction), wherein the focusing actuator includes a focusing coil attached under the swing arm and a Halbach magnet array disposed under the focusing coil minimizes thickness. Friction or backlash can be avoided, and non-repetitive errors can be reduced. The thickness of the ultra-small storage device can be reduced due to the use of a Halbach magnet array.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: May 26, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Q Lee, Kang Ho Park, Mun Cheol Paek, Kwang Yong Kang