Patents by Inventor Kwi-il PARK

Kwi-il PARK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10166400
    Abstract: Provided is a method for separating a nanogenerator, which includes laminating a buffer layer on a sacrificial substrate, making a nanogenerator on the buffer layer, laminating a metal layer on the nanogenerator and separating the nanogenerator from the buffer layer. Here, a nanogenerator is separated by using a stress difference between the sacrificial substrate and the metal layer, instead of an existing method in which a nanogenerator is separated from the sacrificial substrate by means of wet etching or the like. In particular, according to a difference between a tensile stress at the metal layer such as nickel and a compressive stress at the lower silicon substrate, the nanogenerator is intactly separated from the silicon oxide layer serving as a buffer layer. Therefore, the nanogenerator may be separated from the sacrificial substrate in a mechanical way, which is safer and more economic in comparison to an existing chemical separation method using an etching solution.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: January 1, 2019
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Keon Jae Lee, Myung Hwan Byun, Kwi Il Park, Geon Tae Hwang, Chang Kyu Chung
  • Patent number: 8803406
    Abstract: There are provided a flexible nanocomposite generator and a method of manufacturing the same. A flexible nanocomposite generator according to the present invention includes a piezoelectric layer formed of a flexible matrix containing piezoelectric nanoparticles and carbon nanostructures; and electrode layers disposed on the upper and lower surfaces of both sides of the piezoelectric layer, in which according to a method for manufacturing a flexible nanocomposite generator according to the present invention and a flexible nanogenerator, it is possible to manufacture a flexible nanogenerator with a large area and a small thickness. Therefore, the nanogenerator may be used as a portion of a fiber or cloth. Accordingly, the nanogenerator according to the present invention generates power in accordance with bending of attached cloth, such that it is possible to continuously generate power in accordance with movement of a human body.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: August 12, 2014
    Assignee: KAIST (Korea Advanced Institute of Science and Technology)
    Inventors: Keon Jae Lee, Kwi-Il Park, Do Kyung Kim, Sang Ouk Kim, Geon-Tae Hwang
  • Patent number: 8661634
    Abstract: A method of manufacturing a flexible piezoelectric device including laminating a first metal layer on a silicon oxide layer on a silicon substrate. The method further includes laminating a device on the first metal layer and annealing the first metal layer to oxidize the first metal into a first metal oxide. The method further includes etching the first metal oxide to separate the device from the silicon oxide layer and transferring the separated device to a flexible substrate using a transfer layer. The metal oxide layer laminated on the silicon substrate is etched to separate the device from the substrate. As a result, physical damage of the silicon substrate is prevented and a cost of using expensive single-crystal silicon substrate is reduced.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: March 4, 2014
    Assignee: KAIST (Korea Advanced Institute of Science and Technology
    Inventors: Keon Jae Lee, Suk Joong L. Kang, Jaemyung Chang, Kwi-il Park, Seungjun Kim, Sang Yong Lee
  • Publication number: 20120295376
    Abstract: Disclosed are a method for fabricating a GaN LED array device for optogenetics and a GaN LED array device fabricated thereby.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Keon Jae LEE, So Young PARK, Seung Hyun LEE, Kwi Il PARK, Min KOO
  • Publication number: 20120133247
    Abstract: There are provided a flexible nanocomposite generator and a method of manufacturing the same. A flexible nanocomposite generator according to the present invention includes a piezoelectric layer formed of a flexible matrix containing piezoelectric nanoparticles and carbon nanostructures; and electrode layers disposed on the upper and lower surfaces of both sides of the piezoelectric layer, in which according to a method for manufacturing a flexible nanocomposite generator according to the present invention and a flexible nanogenerator, it is possible to manufacture a flexible nanogenerator with a large area and a small thickness. Therefore, the nanogenerator may be used as a portion of a fiber or cloth. Accordingly, the nanogenerator according to the present invention generates power in accordance with bending of attached cloth, such that it is possible to continuously generate power in accordance with movement of a human body.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 31, 2012
    Inventors: Keon Jae Lee, Kwi-Il Park, Do Kyung Kim, Sang Ouk Kim, Geon-Tae Hwang
  • Publication number: 20110000060
    Abstract: Provided are a method for manufacturing a flexible device, a flexible device, a flexible piezoelectric device and a flexible capacitor manufactured by the same, and a method for manufacturing a flexible sensor. A method for manufacturing a flexible device includes: laminating a first metal layer on a silicon oxide layer on a silicon substrate; laminating a device on the first metal layer; annealing the first metal layer to oxidize the first metal into a first metal oxide; etching the first metal oxide so as to separate the device from the silicon oxide layer; and transferring the separated device to a flexible substrate using a transfer layer. According to the disclosed method for manufacturing a flexible device, differently from the prior art where the silicon substrate itself is etched, the metal oxide layer laminated on the silicon substrate is etched to separate the device from the substrate.
    Type: Application
    Filed: March 24, 2010
    Publication date: January 6, 2011
    Applicant: KAIST (Korea Advanced Institute of Science and Technology)
    Inventors: Keon Jae Lee, Suk Joong L. Kang, Jaemyung Chang, Kwi-il PARK, Seungjun Kim, Sang Yong Lee