Patents by Inventor Kwok P. Chan

Kwok P. Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6785461
    Abstract: Controllable fiber optic attenuators and attenuation systems are disclosed for controllably extracting optical energy from a fiber optic, and therefore attenuating the optical signal being transmitted through the fiber optic. Material removed from a portion of the fiber optic exposes a side surface through which optical energy can be extracted. The portion of the fiber is suspended between two support points, and a controllable material is formed over the surface for controllably extracting optical energy according to a changeable stimulus applied thereto, which affects the refractive index thereof. In one embodiment, the changeable stimulus is light energy from a light source having a different wavelength from the wavelength of the optical energy of interest.
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: August 31, 2004
    Assignee: Molecular OptoElectronics Corp.
    Inventor: Kwok P. Chan
  • Publication number: 20020168170
    Abstract: Controllable fiber optic attenuators and attenuation systems are disclosed for controllably extracting optical energy from a fiber optic, and therefore attenuating the optical signal being transmitted through the fiber optic. Material removed from a portion of the fiber optic exposes a side surface through which optical energy can be extracted. The portion of the fiber is suspended between two support points, and a controllable material is formed over the surface for controllably extracting optical energy according to a changeable stimulus applied thereto, which affects the refractive index thereof. In one embodiment, the changeable stimulus is light energy from a light source having a different wavelength from the wavelength of the optical energy of interest.
    Type: Application
    Filed: January 2, 2002
    Publication date: November 14, 2002
    Applicant: Molecular OptoElectronics Corporation
    Inventor: Kwok P. Chan
  • Publication number: 20010053822
    Abstract: Novel polymer compositions for controlling or correcting dispersion mismatch between the composition and a side-fiber polished optical fiber are disclosed. The polymer compositions contain an infrared absorbing dye having an absorption maximum from about 900 to about 1200 nm and a polar olefin copolymer containing monomers which are formed from polar olefins having an ester, benzene, or halogen substitutent attached. A method for controlling the dispersion exhibited by the novel polymer compositions is also disclosed. The method includes forming the polymer composition over an exposed surface of an optical fiber. Dispersion is controlled by controlling the amount of dye present in the polymer composition. Also disclosed is an optical device from which improvements in the uniformity of spectral response and performance are observed across a wavelength band. The optical device includes the polymer composition formed over an optical fiber.
    Type: Application
    Filed: June 29, 2001
    Publication date: December 20, 2001
    Inventors: Kwok P. Chan, David G. Gascoyne, Gregory A. Wagoner
  • Publication number: 20010016106
    Abstract: Controllable fiber optic attenuators and attenuation systems are disclosed for controllably extracting optical energy from a fiber optic, and therefore attenuating the optical signal being transmitted through the fiber optic. In one aspect, material is removed from a portion of the fiber optic, thereby exposing a surface through which optical energy can be extracted. The portion of the fiber is suspended between two support points, and a controllable material is formed over the surface for controllably extracting optical energy according to a changeable stimulus applied thereto, which affects the refractive index thereof. In one embodiment, the changeable stimulus is temperature, and a controllable heating/cooling source can be provided in the attenuator for control of the attenuation. The limited amount of thermal contact between the suspended, side-polished portion of the fiber optic and the controllable material to surrounding structures offers a more predictable response, and improved response time.
    Type: Application
    Filed: February 20, 2001
    Publication date: August 23, 2001
    Applicant: Molecular OptoElectronics Corporation
    Inventors: Gregory A. Wagoner, Kevin J. McCallion, Kwok P. Chan, David G. Gascoyne
  • Patent number: 5516566
    Abstract: Low molecular weight cyclic oligomers of formula (I) ##STR1## in which n is an integer of 2 to 20, and each C in the oligomer is a radical of formula (II): ##STR2## and each X in the oligomer is --O--R--O-- or --S--R--S--, B and D are both carbonyl groups CO, or together represent a divalent radical of formula ##STR3## in which A.sub.1, A.sub.2, A.sub.3 A.sub.4, Ar.sub.1, Ar.sub.2 and Ar.sub.3 are selected from a variety of aromatic radicals, A.sub.1, A.sub.2, Ar.sub.3 and Ar.sub.4 also possibly being hydrogen, are useful in the production of high molecular weight, linear, polyketones, polyphthalazines and polyisoquinolines; the cyclic oligomers have low melt viscosities when heated above their softening temperatures and can be readily molded, whereafter they can be ring-open polymerized to form molded high molecular weight polymer products with excellent properties.
    Type: Grant
    Filed: January 3, 1995
    Date of Patent: May 14, 1996
    Inventors: Allan S. Hay, Kwok P. Chan
  • Patent number: 5405956
    Abstract: Low molecular weight cyclic oligomers of formula (I) ##STR1## in which n is an integer of 2 to 20, and each C in the oligomer is a radical of formula (II): ##STR2## and each X in the oligomer is --O--R--O-- or --S--R--S--, B and D are both carbonyl groups CO, or together represent a divalent radical of formula ##STR3## in which A.sub.1, A.sub.2, A.sub.3 A.sub.4, Ar.sub.1, Ar.sub.2 and Ar.sub.3 are selected from a variety of aromatic radicals, A.sub.1, A.sub.2, Ar.sub.3 and Ar.sub.4 also possibly being hydrogen, are useful in the production of high molecular weight, linear, polyketones, polyphthalazines and polyisoquinolines; the cyclic oligomers have low melt viscosities when heated above their softening temperatures and can be readily molded, whereafter they can be rings-open polymerized to form molded high molecular weight polymer products with excellent properties.
    Type: Grant
    Filed: March 1, 1994
    Date of Patent: April 11, 1995
    Inventors: Allan S. Hay, Kwok P. Chan