Patents by Inventor Kye-Jin Lee
Kye-Jin Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12317532Abstract: A semiconductor device includes a nucleation layer, a buffer layer, a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, S/D electrodes, and a gate electrode. The nucleation layer includes a composition that includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer is disposed on and forms an interface with the nucleation layer. The buffer layer has a concentration of the first element oscillating within the buffer layer, such that the concentration of the first element varies as an oscillating function of a distance within a thickness of the buffer layer. An oscillation rate in the concentration of the first element per unit thickness of the buffer layer varies with respect to a first reference point within the buffer layer. The first and second nitride-based semiconductor layer, S/D electrodes, and a gate electrode are disposed on the buffer layer.Type: GrantFiled: July 20, 2021Date of Patent: May 27, 2025Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.Inventors: Yi-Lun Chou, Kye Jin Lee, Han-Chin Chiu, Xiuhua Pan
-
Patent number: 12289901Abstract: A semiconductor device includes a nucleation layer, a buffer layer, a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, S/D electrodes, and a gate electrode. The nucleation layer includes a composition that includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer has a concentration of the first element oscillating within the buffer layer, such that the concentration of the first element varies as an oscillating function of a distance within a thickness of the buffer layer. A first oscillation rate between a first reference point and a second reference point within the buffer layer is less than a second oscillation rate between the second reference point and a third reference point within the buffer layer. The first and second nitride-based semiconductor layer, S/D electrodes, and a gate electrode are disposed on the buffer layer.Type: GrantFiled: July 20, 2021Date of Patent: April 29, 2025Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.Inventors: Yi-Lun Chou, Kye Jin Lee, Han-Chin Chiu, Xiuhua Pan
-
Patent number: 12279444Abstract: A semiconductor device includes a nucleation layer, a buffer layer, a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, S/D electrodes, and a gate electrode. The nucleation layer includes a composition that includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer has a concentration of the first element oscillating within the buffer layer, such that the concentration of the first element varies as an oscillating function of a distance within a thickness of the buffer layer. A first oscillation rate between a first reference point and a second reference point within the buffer layer is greater than a second oscillation rate between the second reference point and a third reference point within the buffer layer. The first and second nitride-based semiconductor layer, S/D electrodes, and a gate electrode are disposed on the buffer layer.Type: GrantFiled: July 20, 2021Date of Patent: April 15, 2025Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.Inventors: Yi-Lun Chou, Kye Jin Lee, Han-Chin Chiu, Xiuhua Pan
-
Patent number: 12274082Abstract: A semiconductor device includes a nucleation layer, a buffer layer, a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, S/D electrodes, and a gate electrode. The nucleation layer includes a composition that includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer is disposed on and forms an interface with the nucleation layer. The buffer layer has a concentration of the first element oscillating within the buffer layer, such that the concentration of the first element varies as an oscillating function of a distance within a thickness of the buffer layer. Spacings among adjacent peaks of the oscillating function change from narrow to wide with respect to a first reference point within the buffer layer. The first and second nitride-based semiconductor layer, S/D electrodes, and a gate electrode are disposed on the buffer layer.Type: GrantFiled: July 20, 2021Date of Patent: April 8, 2025Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.Inventors: Yi-Lun Chou, Kye Jin Lee, Han-Chin Chiu, Xiuhua Pan
-
Patent number: 12148713Abstract: A semiconductor device includes a nucleation layer, a buffer layer, a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, S/D electrodes, and a gate electrode. The nucleation layer includes a composition that includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer is disposed on and forms an interface with the nucleation layer. The buffer layer has a concentration of the first element oscillating within the buffer layer, such that the concentration of the first element varies as an oscillating function of a distance within a thickness of the buffer layer. Spacings among adjacent peaks of the oscillating function change from wide to narrow with respect to a first reference point within the buffer layer. The first and second nitride-based semiconductor layer, S/D electrodes, and a gate electrode are disposed on the buffer layer.Type: GrantFiled: April 12, 2021Date of Patent: November 19, 2024Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.Inventors: Yi-Lun Chou, Kye Jin Lee, Han-Chin Chiu, Xiuhua Pan
-
Patent number: 12125801Abstract: A semiconductor device includes a nucleation layer, a first buffer layer, a first nitride-based semiconductor layer, and a second buffer layer. The nucleation layer includes a compound which includes a first element. The first buffer layer includes a III-V compound which includes the first element. A concentration of the first element varies with respect to a first reference point within the first buffer layer. The first nitride-based semiconductor layer is disposed on the first buffer layer. The second buffer layer includes a III-V compound which includes a second element different than the first element. The second buffer layer is disposed on and forms an interface with the first nitride-based semiconductor layer. A concentration of the second element varies to cyclically oscillate as a function of a distance within a thickness of the second buffer layer, which occurs with respect to a second reference point within the second buffer layer.Type: GrantFiled: July 26, 2021Date of Patent: October 22, 2024Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.Inventors: Yi-Lun Chou, Kye Jin Lee, Han-Chin Chiu, Xiuhua Pan
-
Patent number: 12125902Abstract: A semiconductor device includes a substrate, a nucleation layer, a buffer layer, first and second nitride-based semiconductor layers, a pair of S/D electrodes, and a gate electrode. The nucleation layer includes a compound which includes a first group III element and is devoid of a second group III element. The buffer layer includes a III-V compound which includes the first and second group III elements. The buffer layer has an element ratio of the first group III element to the second group III element that decrementally decreases and then incrementally increases as a function of a distance within a thickness of the buffer layer. The first nitride-based semiconductor layer is disposed on the buffer layer. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer. The S/D electrodes and a gate electrode are disposed over the second nitride-based semiconductor layer.Type: GrantFiled: July 26, 2021Date of Patent: October 22, 2024Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.Inventors: Yi-Lun Chou, Kye Jin Lee, Han-Chin Chiu, Xiuhua Pan
-
Patent number: 11827977Abstract: A CVD apparatus for manufacturing a III-nitride-based layer having a rotating wafer carrier positioned inside a reaction chamber that receives a mixture of a nitrogen gas source and a group III element gas source. Recesses are formed within the wafer carrier, each including a satellite disc of thickness x for accepting a wafer of thickness t. The satellite disc includes a peripheral notch of height a, and a notch thickness of x?a=b. A peripheral retaining ring includes a vertical rise portion extending a distance of e+f and a laterally-extending portion, the laterally-extending portion engaging the satellite disc notch. A gap c is formed between the substrate and a surface of the satellite disc. The relationship of a+b+c+t=b+e+f is satisfied such that laminar flow occurs in the region of the retaining ring.Type: GrantFiled: April 19, 2021Date of Patent: November 28, 2023Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.Inventor: Kye Jin Lee
-
Publication number: 20230070825Abstract: A CVD apparatus for manufacturing a III-nitride-based layer having a rotating wafer carrier positioned inside a reaction chamber that receives a mixture of a nitrogen gas source and a group III element gas source. Recesses are formed within the wafer carrier, each including a satellite disc of thickness x for accepting a wafer of thickness t. The satellite disc includes a peripheral notch of height a, and a notch thickness of x?a=b. A peripheral retaining ring includes a vertical rise portion extending a distance of e+f and a laterally-extending portion, the laterally-extending portion engaging the satellite disc notch. A gap c is formed between the substrate and a surface of the satellite disc. The relationship of a+b+c+t=b+e+f is satisfied such that laminar flow occurs in the region of the retaining ring.Type: ApplicationFiled: April 19, 2021Publication date: March 9, 2023Inventor: Kye Jin LEE
-
Publication number: 20230072850Abstract: A semiconductor device includes a substrate, a nucleation layer, a buffer layer, first and second nitride-based semiconductor layers, a pair of S/D electrodes, and a gate electrode. The nucleation layer is disposed on the substrate. The buffer layer includes a III-V compound which includes a first element. The buffer layer is disposed on the nucleation layer. The buffer layer has a variable concentration of the first element that incrementally increases and then decrementally decreases as a function of a distance within a thickness of the buffer layer. The first nitride-based semiconductor layer is disposed on the buffer layer. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer and has a bandgap greater than a bandgap of the first nitride-based semiconductor layer. The S/D electrodes and a gate electrode are disposed over the second nitride-based semiconductor layer.Type: ApplicationFiled: April 12, 2021Publication date: March 9, 2023Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN
-
Publication number: 20230031662Abstract: A III-nitride-based semiconductor wafer is provided that includes a substrate with a central region and a peripheral edge region. One or more intermediate layers may be optionally provided selected from a buffer layer, a seed layer, or a transition layer. A peripheral edge feature is formed in or on a peripheral edge region of the substrate or the transition layer, with one or more peripheral edge passivation layers or peripheral edge surface texturing. The peripheral edge feature extends only around the peripheral edge and not in the central region. One or more III-nitride-based layers is positioned over the central region. In the central region, the III-nitride layer is an epitaxial layer while in the peripheral edge region, it is a polycrystalline layer. Stress due to lattice mismatches and differences in the coefficient of thermal expansion between the III-nitride layer and the substrate is relieved, minimizing defects.Type: ApplicationFiled: April 2, 2021Publication date: February 2, 2023Inventors: Kye Jin LEE, Ke WANG, Wen-Yuan HSIEH, Xinhua LI
-
Publication number: 20220375876Abstract: A semiconductor device includes a nucleation layer, a buffer layer, a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, S/D electrodes, and a gate electrode. The nucleation layer includes a composition that includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer is disposed on and forms an interface with the nucleation layer. The buffer layer has a concentration of the first element oscillating within the buffer layer, such that the concentration of the first element varies as an oscillating function of a distance within a thickness of the buffer layer. Spacings among adjacent peaks of the oscillating function change from wide to narrow with respect to a first reference point within the buffer layer. The first and second nitride-based semiconductor layer, S/D electrodes, and a gate electrode are disposed on the buffer layer.Type: ApplicationFiled: April 12, 2021Publication date: November 24, 2022Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN
-
Publication number: 20220376053Abstract: Embodiments of the present application disclose a semiconductor device and a manufacturing method thereof. The semiconductor device includes a semiconductor layer, a first doped nitride semiconductor layer disposed on the semiconductor layer, and a second doped nitride semiconductor layer disposed on the first doped nitride semiconductor layer. The semiconductor device further includes an undoped nitride semiconductor layer between the semiconductor layer and the first doped nitride semiconductor layer. The undoped nitride semiconductor layer has a first surface in contact with the semiconductor layer and a second surface in contact with the first doped nitride semiconductor layer.Type: ApplicationFiled: June 4, 2020Publication date: November 24, 2022Inventors: KING YUEN WONG, KYE JIN LEE
-
Publication number: 20220328679Abstract: A semiconductor device includes a substrate, a nucleation layer, a buffer layer, first and second nitride-based semiconductor layers, a pair of S/D electrodes, and a gate electrode. The nucleation layer is disposed on the substrate. The buffer layer includes a III-V compound which includes a first element. The buffer layer is disposed on the nucleation layer. The buffer layer has a variable concentration of the first element that decrementally decreases and then incrementally increases as a function of a distance within a thickness of the buffer layer. The first nitride-based semiconductor layer is disposed on the buffer layer. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer and has a bandgap greater than a bandgap of the first nitride-based semiconductor layer. The S/D electrodes and a gate electrode are disposed over the second nitride-based semiconductor layer.Type: ApplicationFiled: July 26, 2021Publication date: October 13, 2022Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN
-
Publication number: 20220328425Abstract: A semiconductor device includes a nucleation layer, a first buffer layer, a first nitride-based semiconductor layer, and a second buffer layer. The nucleation layer includes a compound which includes a first element. The first buffer layer includes a III-V compound which includes the first element. A concentration of the first element varies with respect to a first reference point within the first buffer layer. The first nitride-based semiconductor layer is disposed on the first buffer layer. The second buffer layer includes a III-V compound which includes a second element different than the first element. The second buffer layer is disposed on and forms an interface with the first nitride-based semiconductor layer. A concentration of the second element varies to cyclically oscillate as a function of a distance within a thickness of the second buffer layer, which occurs with respect to a second reference point within the second buffer layer.Type: ApplicationFiled: July 26, 2021Publication date: October 13, 2022Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN
-
Publication number: 20220328675Abstract: A semiconductor device includes a nucleation layer, a buffer layer, a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, S/D electrodes, and a gate electrode. The nucleation layer includes a composition that includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer has a concentration of the first element oscillating within the buffer layer, such that the concentration of the first element varies as an oscillating function of a distance within a thickness of the buffer layer. A first oscillation rate between a first reference point and a second reference point within the buffer layer is greater than a second oscillation rate between the second reference point and a third reference point within the buffer layer. The first and second nitride-based semiconductor layer, S/D electrodes, and a gate electrode are disposed on the buffer layer.Type: ApplicationFiled: July 20, 2021Publication date: October 13, 2022Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN
-
Publication number: 20220328680Abstract: A semiconductor device includes a substrate, a nucleation layer, a buffer layer, first and second nitride-based semiconductor layers, a pair of S/D electrodes, and a gate electrode. The nucleation layer includes a compound which includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer is disposed on and forms an interface with the nucleation layer. The buffer layer has a concentration of the first element cyclically oscillating with respect to first and second reference points within a buffer layer. The first and second reference points are respectively positioned at first and second distances from a top surface of the nucleation layer. The first nitride-based semiconductor layer is disposed on the buffer layer. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer. The S/D electrodes and a gate electrode are disposed over the second nitride-based semiconductor layer.Type: ApplicationFiled: July 26, 2021Publication date: October 13, 2022Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN
-
Publication number: 20220328674Abstract: A semiconductor device includes a substrate, a nucleation layer, a buffer layer, first and second nitride-based semiconductor layers, a pair of S/D electrodes, and a gate electrode. The nucleation layer includes a compound which includes a first group III element and is devoid of a second group III element. The buffer layer includes a III-V compound which includes the first and second group III elements. The buffer layer has an element ratio of the first group III element to the second group III element that decrementally decreases and then incrementally increases as a function of a distance within a thickness of the buffer layer. The first nitride-based semiconductor layer is disposed on the buffer layer. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer. The S/D electrodes and a gate electrode are disposed over the second nitride-based semiconductor layer.Type: ApplicationFiled: July 26, 2021Publication date: October 13, 2022Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN
-
Publication number: 20220328424Abstract: A semiconductor device includes a substrate, a nucleation layer, a buffer layer, first and second nitride-based semiconductor layers, a pair of S/D electrodes, and a gate electrode. The nucleation layer includes a compound which includes a first group III element and is devoid of a second group III element. The buffer layer includes a III-V compound which includes the first and second group III elements. The buffer layer has an element ratio of the first group III element to the second group III element that incrementally increases and then decrementally decreases as a function of a distance within a thickness of the buffer layer. The first nitride-based semiconductor layer is disposed on the buffer layer. The second nitride-based semiconductor layer is disposed on the first nitride-based semiconductor layer. The S/D electrodes and a gate electrode are disposed over the second nitride-based semiconductor layer.Type: ApplicationFiled: July 26, 2021Publication date: October 13, 2022Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN
-
Publication number: 20220328676Abstract: A semiconductor device includes a nucleation layer, a buffer layer, a first nitride-based semiconductor layer, a second nitride-based semiconductor layer, S/D electrodes, and a gate electrode. The nucleation layer includes a composition that includes a first element. The buffer layer includes a III-V compound which includes the first element. The buffer layer has a concentration of the first element oscillating within the buffer layer, such that the concentration of the first element varies as an oscillating function of a distance within a thickness of the buffer layer. A first oscillation rate between a first reference point and a second reference point within the buffer layer is less than a second oscillation rate between the second reference point and a third reference point within the buffer layer. The first and second nitride-based semiconductor layer, S/D electrodes, and a gate electrode are disposed on the buffer layer.Type: ApplicationFiled: July 20, 2021Publication date: October 13, 2022Inventors: Yi-Lun CHOU, Kye Jin LEE, Han-Chin CHIU, Xiuhua PAN