Patents by Inventor Kyeong-Soon Park

Kyeong-Soon Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220167849
    Abstract: Disclosed are a catheter which can perform both multi diagnosis and treatment, and a catheter system comprising same. A multi diagnosis and treatment catheter comprises: a triple-clad fiber; and a lens connected to one end of the triple-clad fiber. The triple-clad fiber comprises: a core guiding a first diagnostic light; a first cladding surrounding the core and guiding a second diagnostic light; a second cladding surrounding the first cladding; a third cladding surrounding the second cladding and guiding a therapeutic light; and a coating layer surrounding the third cladding.
    Type: Application
    Filed: April 3, 2020
    Publication date: June 2, 2022
    Applicants: IUF-HYU (INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY), CHUNG-ANG UNIVERSITY INDUSTRY-ACADEMY COOPERATION FOUNDATION, KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hong Ki YOO, Min Woo LEE, Jin Won KIM, Wang Yuhl OH, Kyeong Soon PARK
  • Patent number: 10086077
    Abstract: Provided is a drug carrier for treatment of atherosclerosis including a biocompatible amphipathic polymer including a macrophage ligand polymer and a hydrophobic substance, and a hydrophobic drug.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: October 2, 2018
    Assignees: Korea University Research and Business Foundation, IUCF-HYU (Industry-University Cooperation Foundation Hanyang University), Chung-Ang University Industry-Academy Cooperation Foundation
    Inventors: Jin Won Kim, Hong Ki Yoo, Kyeong Soon Park
  • Publication number: 20170319699
    Abstract: Provided is a drug carrier for treatment of atherosclerosis including a biocompatible amphipathic polymer including a macrophage lignad polymer and a hydrophobic substance, and a hydrophobic drug.
    Type: Application
    Filed: November 8, 2016
    Publication date: November 9, 2017
    Inventors: Jin Won KIM, Hong Ki YOO, Kyeong Soon PARK
  • Patent number: 8841085
    Abstract: Disclosed are a nanoparticle sensor for measuring protease activity, for protease imaging, and a method for preparing the same. More specifically, the present invention relates to a nanoparticle sensor for measuring protease activity in which a fluorophore- and a quencher-conjugated peptide substrate is conjugated to a biocompatible polymer nanoparticle. The peptide substrate is specifically lysed by a protease. The sensor according to the present invention is capable of inhibiting emission of fluorescence with high extinctive activity of the quencher on a fluorescent material. But strong fluorescence is specifically emitted only if the peptide substrate is lysed by a specific protease. Therefore, the sensor is especially useful as a method for screening a novel drug such as a protease overexpression inhibitor, and early diagnosis of incurable diseases and various diseases such as autoimmune diseases including cancer, osteoarthritis, rheumatoid arthritis and dementia.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 23, 2014
    Assignees: Korea Institute of Science and Technology, The Asan Foundation, Futurechem Co., Ltd.
    Inventors: Ick-Chan Kwon, Kui-Won Choi, Kwang-Meyung Kim, In-Chan Youn, Seul-Ki Lee, Kyeong-Soon Park, Dae-Hyuk Moon, Dae-Yoon Chi, Seung-Jin Lee, Seung-Jae Myung
  • Patent number: 8614285
    Abstract: Disclosed is a novel photosensitizer based on polymer derivatives-photosensitizer conjugates for photodynamic therapy capable of being selectively accumulated in cancerous tissues and producing singlet oxygen or free radical by laser irradiation. The polymer derivatives-photosensitizer conjugates for photodynamic therapy are prepared as nano-sized particles, and have excellent selection and accumulation ratio for cancerous tissues. The photosensitizer conjugates can produce singlet oxygen or free radical by a specific laser wavelength. Owing to the excellent selection and accumulation ratio for cancerous tissues, the conjugates minimizes photo-cytotoxicity of the conventional photosensitizer having a low molecular amount. Accordingly, the conjugates are very useful as a photosensitizes for photodynamic therapy with reduced side effects and excellent therapeutic effectiveness.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: December 24, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Ick-Chan Kwon, Kui-Won Choi, Kwang-Meyung Kim, In-Chan Youn, Jong-Ho Kim, Kyeong-Soon Park
  • Patent number: 8551727
    Abstract: Disclosed are a metal nanoparticle onto which a peptide substrate specifically degraded by protease and fluorophore are chemically modified for selectively imaging protease expressed in cell and in tissue in a human body, and the use thereof. Also, a quantitative analysis method of protease using the metal nanoparticle, a cell imaging method and a drug screening method of inhibiting a protease overexpression are provided. In detail, the present invention is directed to a metal nanoparticle having a peptide substrate and fluorophore coupled thereto, the peptide substrate and the fluorophore being specifically degraded by due to a protease activated in various ways in cell and in a human body to exhibit fluorescence. Hence, the metal nanoparticle can be used to rapidly screen activation and inhibition of the protease in the imaging manner.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: October 8, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Ick-Chan Kwon, Kui-Won Choi, Kwang-Meyung Kim, Cheol-Hee Ahn, In-Chan Youn, Seul-Ki Lee, Kyeong-Soon Park
  • Patent number: 8323622
    Abstract: Disclosed are Ionic complex nanoparticles for detecting heparanase activities and a method for preparing the same. More specifically, disclosed are Ionic complex nanoparticles for detecting heparanase activities, wherein negative-ion substrate polymers specifically degraded by heparanase and positive-ion biocompatible polymers ionically bind to each other, and fluorophores or quenchers bind to each of the polymers. The ionic complex nanoparticles for detecting heparanase activities may be applied to a method for screening novel drugs such as inhibitors that prevent over-expression of heparanase. Various cells and tissues where over-expression of heparanase occurs may be non-invasively imaged in cancer cells, cancer tissues, and tissues of various inflammatory diseases.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: December 4, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: Ick-Chan Kwon, Kwang-Meyung Kim, Kui-Won Choi, Kyeong-Soon Park, Seul-Ki Lee
  • Publication number: 20110213121
    Abstract: Disclosed are a nanoparticle sensor for measuring protease activity, for protease imaging, and a method for preparing the same. More specifically, the present invention relates to a nanoparticle sensor for measuring protease activity in which a fluorophore- and a quencher-conjugated peptide substrate is conjugated to a biocompatible polymer nanoparticle. The peptide substrate is specifically lysed by a protease. The sensor according to the present invention is capable of inhibiting emission of fluorescence with high extinctive activity of the quencher on a fluorescent material. But strong fluorescence is specifically emitted only if the peptide substrate is lysed by a specific protease. Therefore, the sensor is especially useful as a method for screening a novel drug such as a protease overexpression inhibitor, and early diagnosis of incurable diseases and various diseases such as autoimmune diseases including cancer, osteoarthritis, rheumatoid arthritis and dementia.
    Type: Application
    Filed: August 27, 2009
    Publication date: September 1, 2011
    Inventors: Ick-Chan Kwon, Kui-Won Choi, Kwang-Meyung Kim, In-Chan Youn, Seul-Ki Lee, Kyeong-Soon Park, Dae-Hyuk Moon, Dae-Yoon Chi, Seung-Jin Lee, Seung-Jae Myung
  • Publication number: 20100233085
    Abstract: Disclosed are Ionic complex nanoparticles for detecting heparanase activities and a method for preparing the same. More specifically, disclosed are Ionic complex nanoparticles for detecting heparanase activities, wherein negative-ion substrate polymers specifically degraded by heparanase and positive-ion biocompatible polymers ionically bind to each other, and fluorophores or quenchers bind to each of the polymers. The ionic complex nanoparticles for detecting heparanase activities may be applied to a method for screening novel drugs such as inhibitors that prevent over-expression of heparanase. Various cells and tissues where over-expression of heparanase occurs may be non-invasively imaged in cancer cells, cancer tissues, and tissues of various inflammatory diseases.
    Type: Application
    Filed: May 27, 2009
    Publication date: September 16, 2010
    Applicant: Korea Institute of Science and Technology
    Inventors: Ick-Chan KWON, Kwang-Meyung KIM, Kui-Won CHOI, Kyeong-Soon PARK, Seul-Ki LEE
  • Publication number: 20100222538
    Abstract: Disclosed is a novel photosensitizer based on polymer derivatives-photosensitizer conjugates for photodynamic therapy capable of being selectively accumulated in cancerous tissues and producing singlet oxygen or free radical by laser irradiation. The polymer derivatives-photosensitizer conjugates for photodynamic therapy are prepared as nano-sized particles, and have excellent selection and accumulation ratio for cancerous tissues. The photosensitizer conjugates can produce singlet oxygen or free radical by a specific laser wavelength. Owing to the excellent selection and accumulation ratio for cancerous tissues, the conjugates minimizes photo-cytotoxicity of the conventional photosensitizer having a low molecular amount. Accordingly, the conjugates are very useful as a photosensitizes for photodynamic therapy with reduced side effects and excellent therapeutic effectiveness.
    Type: Application
    Filed: April 23, 2008
    Publication date: September 2, 2010
    Inventors: Ick-Chan Kwon, Kui-Won Choi, Kwang-Meyung Kim, In-Chan Youn, Jong-Ho Kim, Kyeong-Soon Park
  • Publication number: 20100124757
    Abstract: Disclosed are a metal nanoparticle onto which a peptide substrate specifically degraded by protease and fluorophore are chemically modified for selectively imaging protease expressed in cell and in tissue in a human body, and the use thereof. Also, a quantitative analysis method of protease using the metal nanoparticle, a cell imaging method and a drug screening method of inhibiting a protease overexpression are provided. In detail, the present invention is directed to a metal nanoparticle having a peptide substrate and fluorophore coupled thereto, the peptide substrate and the fluorophore being specifically degraded by due to a protease activated in various ways in cell and in a human body to exhibit fluorescence. Hence, the metal nanoparticle can be used to rapidly screen activation and inhibition of the protease in the imaging manner.
    Type: Application
    Filed: April 10, 2008
    Publication date: May 20, 2010
    Inventors: Ick-Chan Kwon, Kui-Won Choi, Kwang-Meyung Kim, Cheol-Hee Ahn, In-Chan Youn, Seul-Ki Lee, Kyeong-Soon Park