Patents by Inventor Kyle Arrington
Kyle Arrington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250112136Abstract: Embodiments disclosed herein include apparatuses with glass core package substrates. In an embodiment, an apparatus comprises a substrate with a first surface and a second surface opposite from the first surface. A sidewall is between the first surface and the second surface, and the substrate comprises a glass layer. In an embodiment, a via is provided through the substrate between the first surface and the second surface, and the via is electrically conductive. In an embodiment, a layer in contact with the sidewall of the substrate surrounds a perimeter of the substrate.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Inventors: Bohan SHAN, Jesse JONES, Zhixin XIE, Bai NIE, Shaojiang CHEN, Joshua STACEY, Mitchell PAGE, Brandon C. MARIN, Jeremy D. ECTON, Nicholas S. HAEHN, Astitva TRIPATHI, Yuqin LI, Edvin CETEGEN, Jason M. GAMBA, Jacob VEHONSKY, Jianyong MO, Makoyi WATSON, Shripad GOKHALE, Mine KAYA, Kartik SRINIVASAN, Haobo CHEN, Ziyin LIN, Kyle ARRINGTON, Jose WAIMIN, Ryan CARRAZZONE, Hongxia FENG, Srinivas Venkata Ramanuja PIETAMBARAM, Gang DUAN, Dingying David XU, Hiroki TANAKA, Ashay DANI, Praveen SREERAMAGIRI, Yi LI, Ibrahim EL KHATIB, Aaron GARELICK, Robin MCREE, Hassan AJAMI, Yekan WANG, Andrew JIMENEZ, Jung Kyu HAN, Hanyu SONG, Yonggang Yong LI, Mahdi MOHAMMADIGHALENI, Whitney BRYKS, Shuqi LAI, Jieying KONG, Thomas HEATON, Dilan SENEVIRATNE, Yiqun BAI, Bin MU, Mohit GUPTA, Xiaoying GUO
-
Publication number: 20250112085Abstract: An apparatus is provided which comprises: a plurality of interconnect layers within a substrate, organic dielectric material over the plurality of interconnect layers, copper pads on a surface of a cavity within the organic dielectric material, an integrated circuit bridge device coupled with the copper pads, wherein a surface of the integrated circuit bridge device is elevated above an opening of the cavity, underfill material between the integrated circuit bridge device and the surface of the cavity, and build-up layers formed over the organic dielectric material around the integrated circuit bridge device. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Applicant: Intel CorporationInventors: Bohan Shan, Ziyin Lin, Haobo Chen, Yiqun Bai, Kyle Arrington, Jose Waimin, Ryan Carrazzone, Hongxia Feng, Dingying Xu, Srinivas Pietambaram, Minglu Liu, Seyyed Yahya Mousavi, Xinyu Li, Gang Duan, Wei Li, Bin Mu, Mohit Gupta, Jeremy Ecton, Brandon C. Marin, Xiaoying Guo, Ashay Dani
-
Publication number: 20250112164Abstract: A device comprises a substrate comprising a plurality of build-up layers and a cavity. A bridge die is located within the cavity and a plurality of cavity side bumps are on one side of the bridge die. A plurality of interconnect pads with variable heights are on one of the build-up layers of the substrate coupled to the plurality of the cavity side bumps to bond the bridge die to the substrate.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Inventors: Bohan SHAN, Onur OZKAN, Ryan CARRAZZONE, Rui ZHANG, Haobo CHEN, Ziyin LIN, Yiqun BAI, Kyle ARRINGTON, Jose WAIMIN, Hongxia FENG, Srinivas Venkata Ramanuja PIETAMBARAM, Gang DUAN, Dingying David XU, Bin MU, Mohit GUPTA, Jeremy D. ECTON, Brandon C. MARIN, Xiaoying GUO, Steve S. CHO, Ali LEHAF, Venkata Rajesh SARANAM, Shripad GOKHALE, Kartik SRINIVASAN, Edvin CETEGEN, Mine KAYA, Nicholas S. HAEHN, Deniz TURAN
-
Patent number: 12266589Abstract: Embodiments of the present disclosure may generally relate to systems, apparatuses, techniques, and/or processes directed to packages that include stacked dies that use thermal conductivity features including thermally conductive through silicon vias (TSVs) filled with thermally conductive material located in passive areas of a first die to route heat from a first die away from a second die that is coupled with the first die. In embodiments, the first die may be referred to as a base die. Embodiments may include thermal blocks in the form of dummy dies that include TSVs at least partially filled with thermal energy conducting material such as copper, solder, or other alloy.Type: GrantFiled: April 15, 2024Date of Patent: April 1, 2025Assignee: Intel CorporationInventors: Weston Bertrand, Kyle Arrington, Shankar Devasenathipathy, Aaron McCann, Nicholas Neal, Zhimin Wan
-
Publication number: 20250106983Abstract: Embodiments disclosed herein include glass core package substrates with a stiffener. In an embodiment, an apparatus comprises a substrate with a first layer with a first width, where the first layer is a glass layer, a second layer under the first layer, where the second layer has a second width that is smaller than the first width, and a third layer over the first layer, where the third layer has a third width that is smaller than the first width. In an embodiment, the apparatus further comprises a metallic structure with a first portion and a second portion, where the first portion is over a top surface of the substrate and the second portion extends away from the first portion and covers at least a sidewall of the first layer.Type: ApplicationFiled: September 27, 2023Publication date: March 27, 2025Inventors: Bohan SHAN, Kyle ARRINGTON, Dingying David XU, Ziyin LIN, Timothy GOSSELIN, Elah BOZORG-GRAYELI, Aravindha ANTONISWAMY, Wei LI, Haobo CHEN, Yiqun BAI, Jose WAIMIN, Ryan CARRAZZONE, Hongxia FENG, Srinivas Venkata Ramanuja PIETAMBARAM, Gang DUAN, Bin MU, Mohit GUPTA, Jeremy D. ECTON, Brandon C. MARIN, Xiaoying GUO, Ashay DANI
-
Patent number: 12238892Abstract: A two-phase immersion cooling system for an integrated circuit assembly may be formed utilizing boiling enhancement structures formed on or directly attached to heat dissipation devices within the integrated circuit assembly, formed on or directly attached to integrated circuit devices within the integrated circuit assembly, and/or conformally formed over support devices and at least a portion of an electronic board within the integrated circuit assembly. In still a further embodiment, the two-phase immersion cooling system may include a low boiling point liquid including at least two liquids that are substantially immiscible with one another.Type: GrantFiled: December 21, 2020Date of Patent: February 25, 2025Assignee: Intel CorporationInventors: Raanan Sover, James Williams, Bradley Smith, Nir Peled, Paul George, Jason Armstrong, Alexey Chinkov, Meir Cohen, Je-Young Chang, Kuang Liu, Ravindranath Mahajan, Kelly Lofgreen, Kyle Arrington, Michael Crocker, Sergio Antonio Chan Arguedas
-
Publication number: 20240332125Abstract: Embodiments disclosed herein include a package substrate. In an embodiment, the package substrate comprises a first layer and a second layer over the first layer. In an embodiment, the second layer comprises a dielectric material including sulfur. In an embodiment, fillers are within the second layer. In an embodiment, the fillers have a volume fraction that is less than approximately 0.2.Type: ApplicationFiled: March 30, 2023Publication date: October 3, 2024Inventors: Kyle ARRINGTON, Clay ARRINGTON, Bohan SHAN, Haobo CHEN, Srinivas V. PIETAMBARAM, Gang DUAN, Ziyin LIN, Hongxia FENG, Yiqun BAI, Xiaoying GUO, Dingying XU, Bai NIE
-
Publication number: 20240312865Abstract: Methods, systems, apparatus, and articles of manufacture to improve reliability of vias in a glass substrate of an integrated circuit package are disclosed. An example integrated circuit (IC) package substrate includes a glass substrate, a via extending between first and second surfaces of the glass substrate, and a conductive material provided in the via, the conductive material including gallium and silver.Type: ApplicationFiled: March 13, 2023Publication date: September 19, 2024Inventors: Kyle Arrington, Bohan Shan, Haobo Chen, Bai Nie, Srinivas Pietambaram, Gang Duan, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu
-
Patent number: 12091484Abstract: Described herein are block copolymers that can be used as compatibilizers. The block copolymers can be graft block or triblock copolymers. The block copolymers can include a polysaccharide or a polyester and a polyolefin. Also described herein are polymer blends that can include and be made using the block copolymers described herein.Type: GrantFiled: March 18, 2019Date of Patent: September 17, 2024Assignee: Virginia Tech Intellectual Properties, Inc.Inventors: John Matson, Kyle Arrington, Kevin Edgar, Junyi Chen
-
Publication number: 20240282667Abstract: Embodiments of the present disclosure may generally relate to systems, apparatuses, techniques, and/or processes directed to packages that include stacked dies that use thermal conductivity features including thermally conductive through silicon vias (TSVs) filled with thermally conductive material located in passive areas of a first die to route heat from a first die away from a second die that is coupled with the first die. In embodiments, the first die may be referred to as a base die. Embodiments may include thermal blocks in the form of dummy dies that include TSVs at least partially filled with thermal energy conducting material such as copper, solder, or other alloy.Type: ApplicationFiled: April 15, 2024Publication date: August 22, 2024Inventors: Weston BERTRAND, Kyle ARRINGTON, Shankar DEVASENATHIPATHY, Aaron MCCANN, Nicholas NEAL, Zhimin WAN
-
Publication number: 20240270929Abstract: Capillary underfill formulations that may include fillers. The fillers may include carbon nanotubes, such as surface functionalized carbon nanotubes. Methods for forming capillary underfill materials that may have improved fracture toughness, reduced crack propagation, and a reduced likelihood of delamination. The surface functionalized carbon nanotubes may include amine functionalized carbon nanotubes. Containers, such as syringes, that may have a reservoir in which a capillary underfill formulation is disposed.Type: ApplicationFiled: February 8, 2023Publication date: August 15, 2024Inventors: Clay Arrington, Kyle Arrington, Ziyin Lin, Jose Waimin, Dingying Xu
-
Publication number: 20240264530Abstract: Light responsive photoresists, and methods of using light responsive photoresists in processes, such as lithography processes. The light responsive photoresists may include a polymer featuring a photocleavable group. Due to the photocleavable group, the polymer may depolymerize when irradiated with one or more wavelengths of light. The depolymerized products may be in the gas phase.Type: ApplicationFiled: December 28, 2022Publication date: August 8, 2024Inventors: Ryan Carrazzone, Kyle Arrington, Brandon Rawlings, Bohan Shan, Dingying Xu
-
Patent number: 12057369Abstract: Embodiments of the present disclosure may generally relate to systems, apparatuses, techniques, and/or processes directed to packages that include stacked dies that use thermal conductivity features including thermally conductive through silicon vias (TSVs) filled with thermally conductive material located in passive areas of a first die to route heat from a first die away from a second die that is coupled with the first die. In embodiments, the first die may be referred to as a base die. Embodiments may include thermal blocks in the form of dummy dies that include TSVs at least partially filled with thermal energy conducting material such as copper, solder, or other alloy.Type: GrantFiled: December 23, 2022Date of Patent: August 6, 2024Assignee: Intel CorporationInventors: Weston Bertrand, Kyle Arrington, Shankar Devasenathipathy, Aaron McCann, Nicholas Neal, Zhimin Wan
-
Patent number: 12046536Abstract: An integrated circuit package includes a first die and second die above a substrate, and a vapor chamber above at least one of the first and second die. A vapor space within the vapor chamber is separated into at least a first section and a second section. The first section may be over the first die, and the second section may be over the second die, for example. The structure separating the first and second sections at least partly restricts flow of vapor between the first and second sections, thereby preventing or reducing thermal cross talk between the first and second dies. In some cases, an anisotropic thermal material is above one of the first or second die, wherein the anisotropic thermal material has substantially higher thermal conductivity in a direction of a heat sink than a thermal conductivity in a direction of a section of the vapor chamber.Type: GrantFiled: April 30, 2019Date of Patent: July 23, 2024Assignee: Intel CorporationInventors: Je-Young Chang, James C. Matayabas, Jr., Zhimin Wan, Kyle Arrington
-
Publication number: 20240222345Abstract: An apparatus is provided which comprises: a plurality of interconnect layers within a substrate, a layer of organic dielectric material over the plurality of interconnect layers, copper pads within the layer of organic dielectric material, a first integrated circuit device copper-to-copper bonded with the copper pads, inorganic dielectric material over the layer of organic dielectric material, the inorganic dielectric material embedding the first integrated circuit device, and the inorganic dielectric material extending across a width of the substrate, and a second integrated circuit device coupled with a substrate surface above the inorganic dielectric material. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Bohan Shan, Haobo Chen, Bai Nie, Srinivas Pietambaram, Gang Duan, Kyle Arrington, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu, Kristof Darmawikarta
-
Publication number: 20240222304Abstract: Methods and apparatus to reduce solder bump bridging between two substrates. An apparatus includes a first substrate including a first bump and a second bump spaced apart from the first bump, the first bump including a first base, the second bump including a second base; and a second substrate including a third bump and a fourth bump spaced apart from the third bump, the third bump including a third base, the fourth bump including a fourth base, the first base electrically coupled to the third base by first solder, the second base electrically coupled to the fourth base by second solder, the first solder having a first volume, the second solder having a second volume, the first volume less than the second volume.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Inventors: Bohan Shan, Jiaqi Wu, Haobo Chen, Srinivas Pietambaram, Bai Nie, Gang Duan, Kyle Arrington, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu
-
Publication number: 20240222301Abstract: Methods and apparatus for optical thermal treatment in semiconductor packages are disclosed. A disclosed example integrated circuit (IC) package includes a dielectric substrate, an interconnect associated with the dielectric substrate, and light absorption material proximate or surrounding the interconnect, the light absorption material to increase in temperature in response to being exposed to a pulsed light for thermal treatment corresponding to the IC package.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Inventors: Bohan Shan, Hongxia Feng, Haobo Chen, Srinivas Pietambaram, Bai Nie, Gang Duan, Kyle Arrington, Ziyin Lin, Yiqun Bai, Xiaoying Guo, Dingying Xu, Sairam Agraharam, Ashay Dani, Eric J. M. Moret, Tarek Ibrahim
-
Publication number: 20240222259Abstract: Methods, systems, apparatus, and articles of manufacture to produce integrated circuit (IC) packages having silicon nitride adhesion promoters are disclosed. An example IC package disclosed herein includes a metal layer on a substrate, a layer on the metal layer, the layer including silicon and nitrogen, and solder resist on the layer.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Inventors: Haobo Chen, Bohan Shan, Xiyu Hu, Rhonda Jack, Catherine Mau, Hongxia Feng, Xiao Liu, Wei Wei, Srinivas Pietambaram, Gang Duan, Xiaoying Guo, Dingying Xu, Kyle Arrington, Ziyin Lin, Hiroki Tanaka, Leonel Arana
-
Publication number: 20240213116Abstract: Methods, systems, apparatus, and articles of manufacture to cool integrated circuit packages having glass substrates are disclosed. An example glass core of an integrated circuit (IC) package disclosed herein includes a fluid inlet to receive a cooling fluid, a fluid outlet, and a channel to fluidly couple the fluid inlet to the fluid outlet, the cooling fluid to flow through the channel from the fluid inlet to the fluid outlet, the channel fluidly isolated from one or more vias extending between a first surface and a second surface of the glass core.Type: ApplicationFiled: December 21, 2022Publication date: June 27, 2024Inventors: Kyle Arrington, Bohan Shan, Haobo Chen, Ziyin Lin, Hongxia Feng, Yiqun Bai, Dingying Xu, Xiaoying Guo, Bai Nie, Srinivas Pietambaram, Gang Duan
-
Publication number: 20240112971Abstract: An integrated circuit (IC) device comprises a substrate comprising a glass core. The glass core comprises a first surface and a second surface opposite the first surface, and a first sidewall between the first surface and the second surface. The glass core may include a conductor within a through-glass via extending from the first surface to the second surface and a build-up layer. The glass cord comprises a plurality of first areas of the glass core and a plurality of laser-treated areas on the first sidewall. A first one of the plurality of laser-treated areas may be spaced away from a second one of the plurality of laser-treated areas. A first area may comprise a first nanoporosity and a laser-treated area may comprise a second nanoporosity, wherein the second nanoporosity is greater than the first nanoporosity.Type: ApplicationFiled: September 30, 2022Publication date: April 4, 2024Applicant: Intel CorporationInventors: Yiqun Bai, Dingying Xu, Srinivas Pietambaram, Hongxia Feng, Gang Duan, Xiaoying Guo, Ziyin Lin, Bai Nie, Haobo Chen, Kyle Arrington, Bohan Shan