Patents by Inventor Kyle D. Clark

Kyle D. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220293866
    Abstract: Triazabicylodecene can effectively n-dope a variety of organic semiconductors, including PCBM, thus increasing in-plane conductivities. We synthesized a series of TBD-based n-dopants via an N-alkylation reaction and studied the effect of various alkyl chains on the physical and device properties of the dopants. Combining two TBD moieties on a long alky chain gave a solid dopant, 2TBD-C10, with high thermal stability above 250° C. PCBM films doped by 2TBD-C10 were the most tolerant to thermal annealing and reached in-plane conductivities of 6.5×10?2 S/cm. Furthermore, incorporating 2TBD-C10 doped PCBM as the electron transport layer (ETL) in methylammonium lead triiodide (MAPbI3) based photovoltaics led to a 23% increase in performance, from 11.8% to 14.5% PCE.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE MITSUBISHI CHEMICAL CORPORATION, A JAPANESE CORPORATION
    Inventors: Julia Schneider, Michael L. Chabinyc, Hengbin Wang, Hidenori Nakayama, Kyle D. Clark, Javier Read de Alaniz
  • Patent number: 11380852
    Abstract: Triazabicylodecene can effectively n-dope a variety of organic semiconductors, including PCBM, thus increasing in-plane conductivities. We synthesized a series of TBD-based n-dopants via an N-alkylation reaction and studied the effect of various alkyl chains on the physical and device properties of the dopants. Combining two TBD moieties on a long alky chain gave a solid dopant, 2TBD-C10, with high thermal stability above 250° C. PCBM films doped by 2TBD-C10 were the most tolerant to thermal annealing and reached in-plane conductivities of 6.5×10?2 S/cm. Furthermore, incorporating 2TBD-C10 doped PCBM as the electron transport layer (ETL) in methylammonium lead triiodide (MAPbI3) based photovoltaics led to a 23% increase in performance, from 11.8% to 14.5% PCE.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: July 5, 2022
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE MITSUBISHI CHEMICAL CORPORATION
    Inventors: Julia Schneider, Michael L. Chabinyc, Hengbin Wang, Hidenori Nakayama, Kyle D. Clark, Javier Read de Alaniz
  • Publication number: 20200194686
    Abstract: Triazabicylodecene can effectively n-dope a variety of organic semiconductors, including PCBM, thus increasing in-plane conductivities. We synthesized a series of TBD-based n-dopants via an N-alkylation reaction and studied the effect of various alkyl chains on the physical and device properties of the dopants. Combining two TBD moieties on a long alky chain gave a solid dopant, 2TBD-C10, with high thermal stability above 250° C. PCBM films doped by 2TBD-C10 were the most tolerant to thermal annealing and reached in-plane conductivities of 6.5×10?2 S/cm. Furthermore, incorporating 2TBD-C10 doped PCBM as the electron transport layer (ETL) in methylammonium lead triiodide (MAPbI3) based photovoltaics led to a 23% increase in performance, from 11.8% to 14.5% PCE.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 18, 2020
    Applicant: The Regents of the University of California
    Inventors: Julia Schneider, Michael L. Chabinyc, Hengbin Wang, Hidenori Nakayama, Kyle D. Clark, Javier Read de Alaniz