Patents by Inventor Kyle E. Hart

Kyle E. Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945194
    Abstract: The present disclosure provides a multilayer film. The multilayer film includes at least two layers including a sealant layer and a second layer in contact with the sealant layer. The sealant layer contains (A) a first ethylene-based polymer having a density from 0.895 g/cc to 0.925 g/cc and a melt index from 0.5 g/10 min to 30 g/10 min; (B) a branched fatty acid amide; and (C) a linear saturated fatty acid amide, wherein the branched fatty acid amide and the linear saturated fatty acid amide have a weight ratio of from 1:5 to 3:1. The second layer contains a second ethylene-based polymer.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: April 2, 2024
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Ronald Wevers, Raul Sharma, Kyle E. Hart, Mridula Kapur, Michaeleen L. Pacholski
  • Patent number: 11926684
    Abstract: A cast film inducing a bimodal ethylene-based polymer having a high density fraction (HDF) from 3.0% to 10.0%, an I10/I2 ratio from 5.5 to 7.0, a short chain branching distribution (SCBD) less than or equal to 10° C., a density from 0.910 g/cc to 0.920 g/cc, and a melt index (I2) from 1.0 g/10 mins to 8.0 g/10 mins.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 12, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Vivek Kalihari, Hrishikesh R. Munj, Jon W. Hobson, Rajen M. Patel
  • Patent number: 11873377
    Abstract: A blown film having a bimodal ethylene-based polymer including a high density fraction (HDF) from 3.0% to 25.0%, an I10/I2 ratio from 5.5 to 7.5, a short chain branching distribution (SCBD) less than or equal to 10 C, a zero shear viscosity ratio from 1.0 to 2.5, a density from 0.902 g/cc to 0.925 g/cc, and a melt index (I2) from 0.5 g/10 mins to 2.0 g/10 mins.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: January 16, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Vivek Kalihari, Francis O. Olajide, Jr., Rajen M. Patel
  • Patent number: 11873393
    Abstract: A bimodal ethylene-based polymer, including a high density fraction (HDF) from 3.0% to 25.0%, wherein the high density fraction is measured by crystallization elution fractionation (CEF) integration at temperatures from 93° C. to 119° C., an I10/I2 ratio from 5.5 to 7.5, wherein I2 is the melt index when measured according to ASTM D 1238 at a load of 2.16 kg and temperature of 190° C. and I10 is the melt index when measured according to ASTM D 1238 at a load of 10 kg and temperature of 190° C., and a short chain branching distribution (SCBD) less than or equal to 10° C., wherein the short chain branching distribution is measured by CEF full width at half height.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: January 16, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Pradeep Jain
  • Patent number: 11814456
    Abstract: A method of producing bimodal ethylene-based polymer includes reacting ethylene monomer and C3-C12 ?-olefin comonomer in the presence of a first catalyst in an agitated reactor to produce a first polymer fraction, and outputting effluent from the agitated reactor. A second catalyst is added to the effluent downstream of the agitated reactor and upstream from a non-agitated reactor, the second catalyst facilitates production of a second polymer fraction having a density and melt index (I2) different from the first polymer fraction. The second catalyst and effluent are mixed in at least one mixer. The second catalyst, second polymer fraction, and the first polymer fraction are passed to the non-agitated reactor; and additional ethylene monomer, additional C3-C12 ?-olefin comonomer, and solvent are passed to the non-agitated reactor to produce more second polymer fraction and thereby the bimodal ethylene-based polymer.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: November 14, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Timothy W. Gambrel, Curvel Hypolite, Daniel S. Rynearson, Michael J. Zogg, Jr., Kyle E. Hart, Michael D. Turner, Jorge Rubalcaba, Pradeep Jain, Mehmet Demirors
  • Publication number: 20220112363
    Abstract: Embodiments are directed to compositions comprising at least one polyethylene (PE) having a density ranging from 0.850 g/cc to 0.970 g/cc, and a polymer processing aid (PPA) masterbatch comprising a PPA polymer blend, at least one polymeric carrier, and optionally up to 12 wt. % of one or more inorganic materials. The PPA polymer blend comprises from 40 to 60 wt. % of one or more fluoroelastomers, and from 40 to 60 wt. % of polyethylene glycol. The composition further comprises at least one fragrance oil. The composition is defined by the equation: RED (PE?PPA masterbatch)<RED (Fragrance oil?PPA masterbatch), wherein the RED (PE?PPA masterbatch) is the relative energy difference (RED) value for the PE and PPA masterbatch and RED (Fragrance oil?PPA masterbatch) is the RED value for the fragrance oil and PPA masterbatch.
    Type: Application
    Filed: January 7, 2020
    Publication date: April 14, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Fawzi G. Hamad, Scott T. Matteucci, Kyle E. Hart, Arnaldo T. Lorenzo, Gregory F. Meyers, Kenneth L. Kearns, JR., Jianbo Hou
  • Publication number: 20220105712
    Abstract: The present disclosure provides a multilayer film. The multilayer film includes at least two layers including a sealant layer and a second layer in contact with the sealant layer. The sealant layer contains (A) a first ethylene-based polymer having a density from 0.895 g/cc to 0.925 g/cc and a melt index from 0.5 g/10 min to 30 g/10 min; (B) a branched fatty acid amide; and (C) a linear saturated fatty acid amide, wherein the branched fatty acid amide and the linear saturated fatty acid amide have a weight ratio of from 1:5 to 3:1. The second layer contains a second ethylene-based polymer.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 7, 2022
    Inventors: Ronald Wevers, Raul Sharma, Kyle E. Hart, Mridula Kapur, Michaeleen L. Pacholski
  • Publication number: 20220008893
    Abstract: A film includes 20.0 weight percent to 69.5 weight percent of a linear low density polyethylene (LLDPE) based polymer. The LLDPE having a high density fraction (HDF) from 3.0% to 8.0%, an I10/I2 ratio from 5.5 to 6.9, and a short chain branching distribution (SCBD) of less than or equal to 8.0° C. The film also includes 0.0 weight percent to 10.0 weight percent low density polyethylene (LDPE) based polymer, and 30.0 weight percent to 70.0 weight percent pore former.
    Type: Application
    Filed: November 22, 2019
    Publication date: January 13, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Andrew T. Heitsch, Yijian Lin, Barbara Bonavoglia, Kyle E. Hart, Mehmet Demirors, Rou Hua Chou, Manoj Thota
  • Publication number: 20210253757
    Abstract: A method of producing bimodal ethylene-based polymer includes reacting ethylene monomer and C3-C12 ?-olefin comonomer in the presence of a first catalyst in an agitated reactor to produce a first polymer fraction, and outputting effluent from the agitated reactor. A second catalyst is added to the effluent downstream of the agitated reactor and upstream from a non-agitated reactor, the second catalyst facilitates production of a second polymer fraction having a density and melt index (I2) different from the first polymer fraction. The second catalyst and effluent are mixed in at least one mixer. The second catalyst, second polymer fraction, and the first polymer fraction are passed to the non-agitated reactor; and additional ethylene monomer, additional C3-C12 ?-olefin comonomer, and solvent are passed to the non-agitated reactor to produce more second polymer fraction and thereby the bimodal ethylene-based polymer.
    Type: Application
    Filed: June 13, 2019
    Publication date: August 19, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Timothy W. Gambel, Curvel Hypolite, Daniel S. Rynearson, Michael J. Zogg, Jr., Kyle E. Hart, Michael D. Turner, Jorge Rubalcaba, Pradeep Jain, Mehmet Demirors
  • Publication number: 20210246241
    Abstract: A cast film inducing a bimodal ethylene-based polymer having a high density fraction (HDF) from 3.0% to 10.0%, an I10/I2 ratio from 5.5 to 7.0, a short chain branching distribution (SCBD) less than or equal to 10° C., a density from 0.910 g/cc to 0.920 g/cc, and a melt index (I2) from 1.0 g/10 mins to 8.0 g/10 mins.
    Type: Application
    Filed: June 13, 2019
    Publication date: August 12, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Vivek Kalihari, Hrishikesh R. Munj, Jon W. Hobson, Rajen M. Patel
  • Publication number: 20210246274
    Abstract: A blown film having a bimodal ethylene-based polymer including a high density fraction (HDF) from 3.0% to 25.0%, an I10/I2 ratio from 5.5 to 7.5, a short chain branching distribution (SCBD) less than or equal to 10 C, a zero shear viscosity ratio from 1.0 to 2.5, a density from 0.902 g/cc to 0.925 g/cc, and a melt index (I2) from 0.5 g/10 mins to 2.0 g/10 mins.
    Type: Application
    Filed: June 13, 2019
    Publication date: August 12, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Vivek Kalihari, Francis O. Olajide, Jr., Rajen M. Patel
  • Publication number: 20210246288
    Abstract: A bimodal ethylene-based polymer, including a high density fraction (HDF) from 3.0% to 25.0%, wherein the high density fraction is measured by crystallization elution fractionation (CEF) integration at temperatures from 93° C. to 119° C., an I10/I2 ratio from 5.5 to 7.5, wherein I2 is the melt index when measured according to ASTM D 1238 at a load of 2.16 kg and temperature of 190° C. and I10 is the melt index when measured according to ASTM D 1238 at a load of 10 kg and temperature of 190° C., and a short chain branching distribution (SCBD) less than or equal to 10° C., wherein the short chain branching distribution is measured by CEF full width at half height.
    Type: Application
    Filed: June 13, 2019
    Publication date: August 12, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Kyle E. Hart, Mehmet Demirors, Timothy W. Gambrel, Philip P. Fontaine, Pradeep Jain
  • Patent number: 4811568
    Abstract: A sub-cooler for a refrigeration system is located between the condenser and the expansion device for the evaporator. The sub-cooler has a sealed cylindrical housing with a main inlet coupled to the outlet of the condenser. This inlet is connected to a spray bar located along the length of the housing near its top, and spray apertures are distributed along the length of the spray bar to spray the refrigerant into the interior of the sub-cooler housing. The temperature controlled expansion valve supplies a tapped off portion of the refrigerant from the condenser to a distributor located within the housing. Three to six separate cooling coils, having multiple turns, extend from the distributor throughout the interior of the housing. The other ends of the cooling coils are coupled with a collector in the housing, and the outlet from the collector is injected into the main suction line coupled to the inlet of the compressor.
    Type: Grant
    Filed: June 24, 1988
    Date of Patent: March 14, 1989
    Assignee: RAM Dynamics, Inc.
    Inventors: Thomas R. Horan, Kyle E. Hart