Patents by Inventor Kyle K. Kirby

Kyle K. Kirby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8253230
    Abstract: Pass-through 3D interconnects and microelectronic dies and systems of stacked dies that include such interconnects to disable electrical connections are disclosed herein. In one embodiment, a system of stacked dies includes a first microelectronic die having a backside, an interconnect extending through the first die to the backside, an integrated circuit electrically coupled to the interconnect, and a first electrostatic discharge (ESD) device electrically isolated from the interconnect. A second microelectronic die has a front side coupled to the backside of the first die, a metal contact at the front side electrically coupled to the interconnect, and a second ESD device electrically coupled to the metal contact. In another embodiment, the first die further includes a substrate carrying the integrated circuit and the first ESD device, and the interconnect is positioned in the substrate to disable an electrical connection between the first ESD device and the interconnect.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: August 28, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Jeffery W. Janzen, Russell D. Slifer, legal representative, Michael Chaine, Kyle K. Kirby, William M. Hiatt
  • Publication number: 20120094443
    Abstract: Pass-through 3D interconnects and microelectronic dies and systems of stacked dies that include such interconnects are disclosed herein. In one embodiment, a system of stacked dies includes a first microelectronic die having a substrate, a metal substrate pad, and a first integrated circuit electrically coupled to the substrate pad. A pass-through 3D interconnect extends between front and back sides of the substrate, including through the substrate pad. The pass-through interconnect is electrically isolated from the substrate pad and electrically coupled to a second integrated circuit of a second microelectronic die attached to the back side of the substrate. In another embodiment, the first integrated circuit is a first memory device and the second integrated circuit is a second memory device, and the system uses the pass-through interconnect as part of an independent communication path to the second memory device.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: David S. Pratt, Kyle K. Kirby, Dewali Ray
  • Publication number: 20120094482
    Abstract: Microelectronic devices and methods for filling vias and forming conductive interconnects in microfeature workpieces and dies are disclosed herein. In one embodiment, a method includes providing a microfeature workpiece having a plurality of dies and at least one passage extending through the microfeature workpiece from a first side of the microfeature workpiece to an opposite second side of the microfeature workpiece. The method can further include forming a conductive plug in the passage adjacent to the first side of the microelectronic workpiece, and depositing conductive material in the passage to at least generally fill the passage from the conductive plug to the second side of the microelectronic workpiece.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 19, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: William M. Hiatt, Kyle K. Kirby
  • Publication number: 20120068348
    Abstract: Some embodiments include interconnect regions. The regions may contain, along a cross section, a closed-shape interior region having an electrically conductive material therein, a first dielectric material configured as a liner extending entirely around a lateral periphery of the interior region, and at least two dielectric projections joining to the dielectric material liner and being laterally outward of the interior region. The dielectric projections may have an outer dielectric ring surrounding an inner dielectric region. The outer ring may consist of the first dielectric material and the inner dielectric region may be a composition different from a composition of the first dielectric material, and in some embodiments the composition within the inner dielectric region may be gaseous.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Inventors: Kyle K. Kirby, Philip J. Ireland
  • Publication number: 20120009717
    Abstract: Microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging die can include a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends partially through the substrate and is in contact with the bond-pad.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 12, 2012
    Inventors: Kyle K. Kirby, Salman Akram, William M. Hiatt
  • Publication number: 20120009776
    Abstract: Semiconductor substrates with unitary vias and via terminals, and associated systems and methods are disclosed. A representative method in accordance with a particular embodiment includes forming a blind via in a semiconductor substrate, applying a protective layer to a sidewall surface of the via, and forming a terminal opening by selectively removing substrate material from an end surface of the via, while protecting from removal substrate material against which the protective coating is applied. The method can further include disposing a conductive material in both the via and the terminal opening to form an electrically conductive terminal that is unitary with conductive material in the via. Substrate material adjacent to the terminal can then be removed to expose the terminal, which can then be connected to a conductive structure external to the substrate.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Patent number: 8084866
    Abstract: Microelectronic devices and methods for filling vias and forming conductive interconnects in microfeature workpieces and dies are disclosed herein. In one embodiment, a method includes providing a microfeature workpiece having a plurality of dies and at least one passage extending through the microfeature workpiece from a first side of the microfeature workpiece to an opposite second side of the microfeature workpiece. The method can further include forming a conductive plug in the passage adjacent to the first side of the microelectronic workpiece, and depositing conductive material in the passage to at least generally fill the passage from the conductive plug to the second side of the microelectronic workpiece.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: December 27, 2011
    Assignee: Micron Technology, Inc.
    Inventors: William M. Hiatt, Kyle K. Kirby
  • Patent number: 8084854
    Abstract: Pass-through 3D interconnects and microelectronic dies and systems of stacked dies that include such interconnects are disclosed herein. In one embodiment, a system of stacked dies includes a first microelectronic die having a substrate, a metal substrate pad, and a first integrated circuit electrically coupled to the substrate pad. A pass-through 3D interconnect extends between front and back sides of the substrate, including through the substrate pad. The pass-through interconnect is electrically isolated from the substrate pad and electrically coupled to a second integrated circuit of a second microelectronic die attached to the back side of the substrate. In another embodiment, the first integrated circuit is a first memory device and the second integrated circuit is a second memory device, and the system uses the pass-through interconnect as part of an independent communication path to the second memory device.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: December 27, 2011
    Assignee: Micron Technology, Inc.
    Inventors: David S. Pratt, Kyle K. Kirby, Dewali Ray
  • Publication number: 20110287572
    Abstract: Methods for fabricating semiconductor devices, such as complementary metal-oxide-semiconductor (CMOS) imagers, include fabricating transistors and other low-elevation features on an active surface of a fabrication substrate, and fabricating contact plugs, conductive lines, external contacts, and other higher-elevation features on the back side of the fabrication substrate. Semiconductor devices with transistors on the active surface and contact plugs that extend through the substrate are also disclosed, as are electronic devices including such semiconductor devices.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 24, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kyle K. Kirby, Steve Oliver
  • Patent number: 8053857
    Abstract: Methods for forming electrically conductive through-wafer interconnects in microelectronic devices and microelectronic devices are disclosed herein. In one embodiment, a microelectronic device can include a monolithic microelectronic substrate with an integrated circuit has a front side with integrated circuit interconnects thereon. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the substrate and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad, a dielectric liner deposited into the passage and in contact with the substrate, first and second conductive layers deposited onto at least a portion of the dielectric liner, and a conductive fill material deposited into the passage over at least a portion of the second conductive layer and electrically coupled to the bond-pad.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: November 8, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Salman Akram, Charles M. Watkins, Kyle K. Kirby, Alan G. Wood, William M. Hiatt
  • Publication number: 20110253042
    Abstract: A method of processing a substrate includes physically contacting an exposed conductive electrode of an electrostatic carrier with a conductor to electrostatically bond a substrate to the electrostatic carrier. The conductor is removed from physically contacting the exposed conductive electrode. Dielectric material is applied over the conductive electrode. The substrate is treated while it is electrostatically bonded to the electrostatic carrier. In one embodiment, a conductor is forced through dielectric material that is received over a conductive electrode of an electrostatic carrier to physically contact the conductor with the conductive electrode to electrostatically bond a substrate to the electrostatic carrier. After removing the conductor from the dielectric material, the substrate is treated while it is electrostatically bonded to the electrostatic carrier. Electrostatic carriers for retaining substrates for processing, and such assemblies, are also disclosed.
    Type: Application
    Filed: June 27, 2011
    Publication date: October 20, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dewali Ray, Warren M. Farnworth, Kyle K. Kirby
  • Patent number: 8035179
    Abstract: Microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging die can include a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends partially through the substrate and is in contact with the bond-pad.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: October 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Salman Akram, William M. Hiatt
  • Patent number: 8030780
    Abstract: Semiconductor substrates with unitary vias and via terminals, and associated systems and methods are disclosed. A representative method in accordance with a particular embodiment includes forming a blind via in a semiconductor substrate, applying a protective layer to a sidewall surface of the via, and forming a terminal opening by selectively removing substrate material from an end surface of the via, while protecting from removal substrate material against which the protective coating is applied. The method can further include disposing a conductive material in both the via and the terminal opening to form an electrically conductive terminal that is unitary with conductive material in the via. Substrate material adjacent to the terminal can then be removed to expose the terminal, which can then be connected to a conductive structure external to the substrate.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: October 4, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Patent number: 8017982
    Abstract: Methods for fabricating photoimagers, such as complementary metal-oxide-semiconductor (CMOS) imagers, include fabricating image sensing elements, transistors, and other low-elevation features on an active surface of a fabrication substrate, and fabricating contact plugs, conductive lines, external contacts, and other higher-elevation features on the back side of the fabrication substrate. Imagers with image sensing elements and transistors on the active surface and contact plugs that extend through the substrate are also disclosed, as are electronic devices including such imagers.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: September 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Steve Oliver
  • Publication number: 20110193226
    Abstract: Microelectronic devices with through-substrate interconnects and associated methods of manufacturing are disclosed herein. In one embodiment, a semiconductor device includes a semiconductor substrate carrying first and second metallization layers. The second metallization layer is spaced apart from the semiconductor substrate with the first metallization layer therebetween. The semiconductor device also includes a conductive interconnect extending at least partially through the semiconductor substrate. The first metallization layer is in electrical contact with the conductive interconnect via the second metallization layer.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 11, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kyle K. Kirby, Kunal R. Parekh, Sarah A. Niroumand
  • Patent number: 7993944
    Abstract: Microelectronic imager assemblies with optical devices having integral reference features and methods for assembling such microelectronic imagers is disclosed herein. In one embodiment, the imager assembly can include a workpiece with a substrate having a front side, a back side, and a plurality of imaging dies on and/or in the substrate. The imaging dies include image sensors, integrated circuitry operatively coupled to the image sensors, and external contacts electrically coupled to the integrated circuitry. The assembly also includes optics supports on the workpiece. The optics supports have openings aligned with corresponding image sensors and first interface features at reference locations relative to corresponding image sensors. The assembly further includes optical devices having optics elements and second interface features seated with corresponding first interface features to position the optics elements at a desired location relative to corresponding image sensors.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 9, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Steven D. Oliver, James M. Wark, Kyle K. Kirby
  • Patent number: 7989022
    Abstract: A method of processing a substrate includes physically contacting an exposed conductive electrode of an electrostatic carrier with a conductor to electrostatically bond a substrate to the electrostatic carrier. The conductor is removed from physically contacting the exposed conductive electrode. Dielectric material is applied over the conductive electrode. The substrate is treated while it is electrostatically bonded to the electrostatic carrier. In one embodiment, a conductor is forced through dielectric material that is received over a conductive electrode of an electrostatic carrier to physically contact the conductor with the conductive electrode to electrostatically bond a substrate to the electrostatic carrier. After removing the conductor from the dielectric material, the substrate is treated while it is electrostatically bonded to the electrostatic carrier. Electrostatic carriers for retaining substrates for processing, and such assemblies, are also disclosed.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: August 2, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Dewali Ray, Warren M. Farnworth, Kyle K. Kirby
  • Patent number: 7960829
    Abstract: A support structure for use with a semiconductor substrate in thinning, or backgrinding, thereof, as well as during post-thinning processing of the semiconductor substrate includes a portion that extends substantially along and around an outer periphery of the semiconductor substrate to impart the thinned semiconductor substrate with rigidity. The support structure may be configured as a ring or as a member that substantially covers an active surface of the semiconductor substrate and forms a protective structure over each semiconductor device carried by the active surface.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 14, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, Warren M. Farnworth, David R. Hembree, Sidney B. Rigg, William M. Hiatt, Peter Benson, Kyle K. Kirby, Salman Akram
  • Publication number: 20110136336
    Abstract: Methods of forming a conductive via may include forming a blind via hole partially through a substrate, forming an aluminum film on surfaces of the substrate, removing a first portion of the aluminum film from some surfaces, selectively depositing conductive material onto a second portion of the aluminum film, and exposing the blind via hole through a back side of the substrate. Methods of fabricating a conductive via may include forming at least one via hole through at least one unplated bond pad, forming a first adhesive over at least one surface of the at least one via hole, forming a dielectric over the first adhesive, forming a base layer over the dielectric and the at least one unplated bond pad, and plating nickel onto the base layer.
    Type: Application
    Filed: February 17, 2011
    Publication date: June 9, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, William Mark Hiatt, Steven Oliver, Alan G. Wood, Sidney B. Rigg, James M. Wark, Kyle K. Kirby
  • Patent number: 7956443
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: June 7, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, Mark Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky