Patents by Inventor Kyle Keilty Williams
Kyle Keilty Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240317286Abstract: A system for railroad directive management is presented. The system can receive a myriad of data related to a directive, track segments, and/or vehicle events on the track and/or track segments. Vehicle- and/or event-specific data can be compared with one or more thresholds, including force thresholds, temporal thresholds, environmental thresholds, and/or event thresholds to determine whether and what kind of directive modification should be instantiated. Specialized algorithms can be implemented to trace vehicle paths along the track to determine whether directive-related segments are traversed, and specialized clustering algorithms can be utilized to cluster data unique to a particular segment on a per-segment basis. The system can be integrated with existing track infrastructure and can further generate alerts to notify coupled systems and/or personnel of directives and/or modification thereof.Type: ApplicationFiled: June 3, 2024Publication date: September 26, 2024Applicant: BNSF Railway CompanyInventors: Christopher Neil Pickard, Kyle Keilty Williams, Greg Harrison, James Helm
-
Patent number: 11999397Abstract: A system for railroad directive management is presented. The system can receive a myriad of data related to a directive, track segments, and/or vehicle events on the track and/or track segments. Vehicle- and/or event-specific data can be compared with one or more thresholds, including force thresholds, temporal thresholds, environmental thresholds, and/or event thresholds to determine whether and what kind of directive modification should be instantiated. Specialized algorithms can be implemented to trace vehicle paths along the track to determine whether directive-related segments are traversed, and specialized clustering algorithms can be utilized to cluster data unique to a particular segment on a per-segment basis. The system can be integrated with existing track infrastructure and can further generate alerts to notify coupled systems and/or personnel of directives and/or modification thereof.Type: GrantFiled: August 12, 2022Date of Patent: June 4, 2024Assignee: BNSF Railway CompanyInventors: Christopher Neil Pickard, Kyle Keilty Williams, Gregory Harrison, James Helm
-
Publication number: 20240075970Abstract: A system for modeling risk of rail buckling in railroad infrastructure is presented. The system can receive a myriad of data related to railroad tracks and/or railroad operations, and weight the data using specially-designed weighting factors that can be unique to each data type. The weighted data can be transformed via specialized algorithms to generate location scores reflective of a risk isolated to a particular area. The system can further utilize additional specialized algorithms to elucidate how such isolated risk can be extrapolated from one location to another. The system can implement a multilayer approach, formulating one or more layers of risk models and aggregating such models into an overarching risk model that can more-accurately forecast risk of rail buckling in a railroad track.Type: ApplicationFiled: October 30, 2023Publication date: March 7, 2024Applicant: BNSF Railway CompanyInventors: Christopher Neil Pickard, Kyle Keilty Williams, Michael L. Schram
-
Patent number: 11801879Abstract: A system for modeling risk of rail buckling in railroad infrastructure is presented. The system can receive a myriad of data related to railroad tracks and/or railroad operations, and weight the data using specially-designed weighting factors that can be unique to each data type. The weighted data can be transformed via specialized algorithms to generate location scores reflective of a risk isolated to a particular area. The system can further utilize additional specialized algorithms to elucidate how such isolated risk can be extrapolated from one location to another. The system can implement a multilayer approach, formulating one or more layers of risk models and aggregating such models into an overarching risk model that can more-accurately forecast risk of rail buckling in a railroad track.Type: GrantFiled: November 14, 2022Date of Patent: October 31, 2023Assignee: BNSF Railway CompanyInventors: Christopher Neil Pickard, Kyle Keilty Williams, Michael L. Schram
-
Publication number: 20230084425Abstract: A system for railroad directive management is presented. The system can receive a myriad of data related to a directive, track segments, and/or vehicle events on the track and/or track segments. Vehicle- and/or event-specific data can be compared with one or more thresholds, including force thresholds, temporal thresholds, environmental thresholds, and/or event thresholds to determine whether and what kind of directive modification should be instantiated. Specialized algorithms can be implemented to trace vehicle paths along the track to determine whether directive-related segments are traversed, and specialized clustering algorithms can be utilized to cluster data unique to a particular segment on a per-segment basis. The system can be integrated with existing track infrastructure and can further generate alerts to notify coupled systems and/or personnel of directives and/or modification thereof.Type: ApplicationFiled: August 12, 2022Publication date: March 16, 2023Applicant: BNSF Railway CompanyInventors: Christopher Neil Pickard, Kyle Keilty Williams, Gregory Harrison, James Helm
-
Patent number: 11511781Abstract: A system for modeling risk of rail buckling in railroad infrastructure is presented. The system can receive a myriad of data related to railroad tracks and/or railroad operations, and weight the data using specially-designed weighting factors that can be unique to each data type. The weighted data can be transformed via specialized algorithms to generate location scores reflective of a risk isolated to a particular area. The system can further utilize additional specialized algorithms to elucidate how such isolated risk can be extrapolated from one location to another. The system can implement a multilayer approach, formulating one or more layers of risk models and aggregating such models into an overarching risk model that can more-accurately forecast risk of rail buckling in a railroad track.Type: GrantFiled: September 10, 2021Date of Patent: November 29, 2022Assignee: BNSF Railway CompanyInventors: Christopher Neil Pickard, Kyle Keilty Williams, Michael L. Schram
-
Patent number: 11453423Abstract: A system for railroad directive management is presented. The system can receive a myriad of data related to a directive, track segments, and/or vehicle events on the track and/or track segments. Vehicle- and/or event-specific data can be compared with one or more thresholds, including force thresholds, temporal thresholds, environmental thresholds, and/or event thresholds to determine whether and what kind of directive modification should be instantiated. Specialized algorithms can be implemented to trace vehicle paths along the track to determine whether directive-related segments are traversed, and specialized clustering algorithms can be utilized to cluster data unique to a particular segment on a per-segment basis. The system can be integrated with existing track infrastructure and can further generate alerts to notify coupled systems and/or personnel of directives and/or modification thereof.Type: GrantFiled: September 13, 2021Date of Patent: September 27, 2022Assignee: BNSF Railway CompanyInventors: Christopher Neil Pickard, Kyle Keilty Williams, Gregory Harrison, James Helm