Patents by Inventor Kyle Kirby

Kyle Kirby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8366852
    Abstract: A method of forming a temporary carrier structure is disclosed which includes forming a plurality of recesses in a carrier structure, the recesses extending to a depth that is less than a thickness of the carrier structure, forming a dissolvable material in the recesses and above a first surface of the carrier structure, securing a thin substrate above the first surface of the carrier structure using the dissolvable material to secure the thin substrate in place, performing at least one process operation on a second surface of the carrier structure to expose the dissolvable material in the recesses and contacting the exposed dissolvable material with a release agent so as to dissolve at least a portion of the dissolvable material.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 5, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Kyle Kirby
  • Patent number: 8110488
    Abstract: A method of increasing etch rate during deep silicon dry etch by altering the geometric shape of the etch mask is presented. By slightly altering the shape of the etch mask, the etch rate is increased in one area where an oval etch mask is used as compared to another areas where different geometrically-shaped etch masks are used even though nearly the same amount of silicon is exposed. Additionally, the depth of the via can be controlled by using different geometrically-shaped etch masks while maintaining virtually the same size in diameter for all the vias.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: February 7, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Kyle Kirby, Swarnal Borthakur
  • Publication number: 20110284152
    Abstract: A method of forming a temporary carrier structure is disclosed which includes forming a plurality of recesses in a carrier structure, the recesses extending to a depth that is less than a thickness of the carrier structure, forming a dissolvable material in the recesses and above a first surface of the carrier structure, securing a thin substrate above the first surface of the carrier structure using the dissolvable material to secure the thin substrate in place, performing at least one process operation on a second surface of the carrier structure to expose the dissolvable material in the recesses and contacting the exposed dissolvable material with a release agent so as to dissolve at least a portion of the dissolvable material.
    Type: Application
    Filed: April 25, 2011
    Publication date: November 24, 2011
    Inventor: Kyle Kirby
  • Publication number: 20110241205
    Abstract: Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
    Type: Application
    Filed: June 14, 2011
    Publication date: October 6, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kyle Kirby, Kunal Parekh
  • Publication number: 20110233777
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Publication number: 20110204526
    Abstract: The invention includes methods of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit, methods of positioning a semiconductor substrate comprising an integrated circuit, methods of processing a semiconductor substrate, and semiconductor devices. In one implementation, a method of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit includes providing a semiconductor substrate comprising at least one integrated circuit die. The semiconductor substrate comprises a circuit side, a backside, and a plurality of conductive vias extending from the circuit side to the backside. The plurality of conductive vias on the semiconductor substrate backside is examined to determine location of portions of at least two of the plurality of conductive vias on the semiconductor substrate backside. From the determined location, x-y spatial orientation of the semiconductor substrate is determined.
    Type: Application
    Filed: May 3, 2011
    Publication date: August 25, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dave Pratt, Kyle Kirby, Steve Oliver, Mark Hiatt
  • Patent number: 7968460
    Abstract: Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kyle Kirby, Kunal Parekh
  • Patent number: 7955946
    Abstract: The invention includes methods of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit, methods of positioning a semiconductor substrate comprising an integrated circuit, methods of processing a semiconductor substrate, and semiconductor devices. In one implementation, a method of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit includes providing a semiconductor substrate comprising at least one integrated circuit die. The semiconductor substrate comprises a circuit side, a backside, and a plurality of conductive vias extending from the circuit side to the backside. The plurality of conductive vias on the semiconductor substrate backside is examined to determine location of portions of at least two of the plurality of conductive vias on the semiconductor substrate backside. From the determined location, x-y spatial orientation of the semiconductor substrate is determined.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: June 7, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Dave Pratt, Kyle Kirby, Steve Oliver, Mark Hiatt
  • Patent number: 7931769
    Abstract: A method of forming a temporary carrier structure is disclosed which includes forming a plurality of recesses in a carrier structure, the recesses extending to a depth that is less than a thickness of the carrier structure, forming a dissolvable material in the recesses and above a first surface of the carrier structure, securing a thin substrate above the first surface of the carrier structure using the dissolvable material to secure the thin substrate in place, performing at least one process operation on a second surface of the carrier structure to expose the dissolvable material in the recesses and contacting the exposed dissolvable material with a release agent so as to dissolve at least a portion of the dissolvable material.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 26, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Kyle Kirby
  • Publication number: 20100171217
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 8, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Publication number: 20090315154
    Abstract: Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Kyle Kirby, Kunal Parekh
  • Publication number: 20090215263
    Abstract: A method of increasing etch rate during deep silicon dry etch by altering the geometric shape of the etch mask is presented. By slightly altering the shape of the etch mask, the etch rate is increased in one area where an oval etch mask is used as compared to another areas where different geometrically-shaped etch masks are used even though nearly the same amount of silicon is exposed. Additionally, the depth of the via can be controlled by using different geometrically-shaped etch masks while maintaining virtually the same size in diameter for all the vias.
    Type: Application
    Filed: May 4, 2009
    Publication date: August 27, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Kyle Kirby, Swarnal Borthakur
  • Publication number: 20090159208
    Abstract: A method of forming a temporary carrier structure is disclosed which includes forming a plurality of recesses in a carrier structure, the recesses extending to a depth that is less than a thickness of the carrier structure, forming a dissolvable material in the recesses and above a first surface of the carrier structure, securing a thin substrate above the first surface of the carrier structure using the dissolvable material to secure the thin substrate in place, performing at least one process operation on a second surface of the carrier structure to expose the dissolvable material in the recesses and contacting the exposed dissolvable material with a release agent so as to dissolve at least a portion of the dissolvable material.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventor: Kyle Kirby
  • Patent number: 7544592
    Abstract: A method of increasing etch rate during deep silicon dry etch by altering the geometric shape of the etch mask is presented. By slightly altering the shape of the etch mask, the etch rate is increased in one area where an oval etch mask is used as compared to another areas where different geometrically-shaped etch masks are used even though nearly the same amount of silicon is exposed. Additionally, the depth of the via can be controlled by using different geometrically-shaped etch masks while maintaining virtually the same size in diameter for all the vias.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: June 9, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kyle Kirby, Swarnal Borthakur
  • Publication number: 20090032964
    Abstract: Present embodiments relate to systems and methods for providing semiconductor device features using a protective layer during coating operations. One embodiment includes a method comprising providing a substrate with a hole formed partially therethrough, the hole comprising an opening in a first side of the substrate. Additionally, the method comprises disposing a protective layer over the first side of the substrate, removing a portion of the protective layer over at least a portion of the opening to provide access to the hole, and filling at least a portion of the hole with a fill material.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Warren Farnworth, Kyle Kirby
  • Publication number: 20080299770
    Abstract: A method of increasing etch rate during deep silicon dry etch by altering the geometric shape of the etch mask is presented. By slightly altering the shape of the etch mask, the etch rate is increased in one area where an oval etch mask is used as compared to another areas where different geometrically-shaped etch masks are used even though nearly the same amount of silicon is exposed. Additionally, the depth of the via can be controlled by using different geometrically-shaped etch masks while maintaining virtually the same size in diameter for all the vias.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: Kyle Kirby, Swarnal Borthakur
  • Publication number: 20080119043
    Abstract: A method for forming electrical interconnects having different diameters and filler materials through a semiconductor wafer comprises forming first and second openings through a semiconductor, wherein the first opening has a narrower width (smaller diameter) than the second opening. A first conductive material is formed over the semiconductor wafer to completely fill the narrower opening and only partially fill the wider opening. The first conductive material is optionally removed from the wider opening using an isotropic etch. A second conductive material is subsequently formed over the semiconductor to completely fill the wider opening.
    Type: Application
    Filed: January 25, 2008
    Publication date: May 22, 2008
    Inventor: Kyle Kirby
  • Publication number: 20080111213
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: October 26, 2007
    Publication date: May 15, 2008
    Applicant: Micron Technology, Inc.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Publication number: 20080029851
    Abstract: A method of forming a multiconductor via includes forming at least one seed layer in at least one through-hole of a substrate, selectively patterning the seed layer to form a plurality of laterally separated regions, and depositing metal upon the regions. Alternatively, a through-hole may be substantially filled with dielectric material, a plurality of smaller through-holes may be formed in the dielectric material, and conductive material may be deposited in the smaller holes. Another method includes forming laterally separated protruding structures in a cavity of a substrate, depositing conductive material over the structures and dielectric material between the structures, and thinning the substrate. Alternatively, conductive nanotubes may be formed in the cavity, and dielectric material may be deposited that surrounds the nanotubes. A method of forming a multichip module includes forming at least one via extending through a plurality of stacked dice that includes a plurality of conductive elements.
    Type: Application
    Filed: October 8, 2007
    Publication date: February 7, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kyle Kirby, Warren Farnworth
  • Publication number: 20080020505
    Abstract: Microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging die can include a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the substrate and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad, a dielectric liner deposited into the passage and in contact with the substrate, first and second conductive layers deposited onto at least a portion of the dielectric liner, and a conductive fill material deposited into the passage over at least a portion of the second conductive layer and electrically coupled to the bond-pad.
    Type: Application
    Filed: September 27, 2007
    Publication date: January 24, 2008
    Inventors: Salman Akram, Charles Watkins, Kyle Kirby, Alan Wood, Wiliam Hiatt