Patents by Inventor Kyle Umeda

Kyle Umeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891661
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: February 6, 2024
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Kevin Aliado, Roger J. A. Chen, Jing Luo, William Nielsen, Kyle Umeda, Ashraf Wahba
  • Publication number: 20240035083
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A salt buffer solution is flowed over the array of cells in the nanopore based sequencing chip to substantially fill the wells in the cells with the salt buffer solution. A lipid and solvent mixture is flowed over the array of cells to deposit the lipid and solvent mixture over at least some of the wells in the cells. A first portion of the cells, each having a lipid bilayer over its well, is detected. A second portion of the cells, each having a lipid membrane but not a lipid bilayer over its well, is detected. An electrical lipid-thinning stimulus is selectively applied to the second portion of the cells but not to the first portion of the cells.
    Type: Application
    Filed: October 6, 2023
    Publication date: February 1, 2024
    Inventors: Kevin Aliado, Roger J.A. Chen, Jing Luo, J. William Maney, JR., William Nielsen, Kyle Umeda, Ashraf Wahba
  • Patent number: 11814676
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A salt buffer solution is flowed over the array of cells in the nanopore based sequencing chip to substantially fill the wells in the cells with the salt buffer solution. A lipid and solvent mixture is flowed over the array of cells to deposit the lipid and solvent mixture over at least some of the wells in the cells. A first portion of the cells, each having a lipid bilayer over its well, is detected. A second portion of the cells, each having a lipid membrane but not a lipid bilayer over its well, is detected. An electrical lipid-thinning stimulus is selectively applied to the second portion of the cells but not to the first portion of the cells.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: November 14, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Kevin Aliado, Roger J. A. Chen, Jing Luo, J. William Maney, Jr., William Nielsen, Kyle Umeda, Ashraf Wahba
  • Publication number: 20230120047
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Kevin Aliado, Roger J.A. Chen, Jing Luo, William Nielsen, Kyle Umeda, Ashraf Wahba
  • Patent number: 11530443
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: December 20, 2022
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Kevin Aliado, Roger J. A. Chen, Jing Luo, William Nielsen, Kyle Umeda, Ashraf Wahba
  • Publication number: 20220042968
    Abstract: Systems and methods for inserting a nanopore into a membrane covering a well are described herein. The membrane can be bowed outwards by establishing an osmotic gradient across the membrane in order to drive fluid into the well, which will increase the amount of fluid in the well and cause the membrane to bow outwards. Nanopore insertion can then be initiated on the bowed membrane.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Geoffrey Barrall, Ashwini Bhat, Michael Dorwart, Jason Komadina, George Carman, Hannah Kallewaard-Lum, Kyle Umeda, Wooseok Jung, Yufang Wang
  • Publication number: 20210310064
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A salt buffer solution is flowed over the array of cells in the nanopore based sequencing chip to substantially fill the wells in the cells with the salt buffer solution. A lipid and solvent mixture is flowed over the array of cells to deposit the lipid and solvent mixture over at least some of the wells in the cells. A first portion of the cells, each having a lipid bilayer over its well, is detected. A second portion of the cells, each having a lipid membrane but not a lipid bilayer over its well, is detected. An electrical lipid-thinning stimulus is selectively applied to the second portion of the cells but not to the first portion of the cells.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Kevin Aliado, Roger J.A. Chen, Jing Luo, J. William Maney, JR., William Nielsen, Kyle Umeda, Ashraf Wahba
  • Patent number: 11041198
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A salt buffer solution is flowed over the array of cells in the nanopore based sequencing chip to substantially fill the wells in the cells with the salt buffer solution. A lipid and solvent mixture is flowed over the array of cells to deposit the lipid and solvent mixture over at least some of the wells in the cells. A first portion of the cells, each having a lipid bilayer over its well, is detected. A second portion of the cells, each having a lipid membrane but not a lipid bilayer over its well, is detected. An electrical lipid-thinning stimulus is selectively applied to the second portion of the cells but not to the first portion of the cells.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: June 22, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Kevin Aliado, Roger J. A. Chen, Jing Luo, J. William Maney, Jr., William Nielsen, Kyle Umeda, Ashraf Wahba
  • Publication number: 20200291468
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Kevin Aliado, Roger J.A. Chen, Jing Luo, William Nielsen, Kyle Umeda, Ashraf Wahba
  • Patent number: 10683543
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: June 16, 2020
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Ashraf Wahba, William Nielsen, Jing Luo, Kevin Aliado, Kyle Umeda, Roger J.A. Chen
  • Publication number: 20200032333
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A salt buffer solution is flowed over the array of cells in the nanopore based sequencing chip to substantially fill the wells in the cells with the salt buffer solution. A lipid and solvent mixture is flowed over the array of cells to deposit the lipid and solvent mixture over at least some of the wells in the cells. A first portion of the cells, each having a lipid bilayer over its well, is detected. A second portion of the cells, each having a lipid membrane but not a lipid bilayer over its well, is detected. An electrical lipid-thinning stimulus is selectively applied to the second portion of the cells but not to the first portion of the cells.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 30, 2020
    Inventors: Kevin Aliado, Roger J.A. Chen, Jing Luo, J. William Maney, JR., William Nielsen, Kyle Umeda, Ashraf Wahba
  • Patent number: 10465240
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A salt buffer solution is flowed over the array of cells in the nanopore based sequencing chip to substantially fill the wells in the cells with the salt buffer solution. A lipid and solvent mixture is flowed over the array of cells to deposit the lipid and solvent mixture over at least some of the wells in the cells. A first portion of the cells, each having a lipid bilayer over its well, is detected. A second portion of the cells, each having a lipid membrane but not a lipid bilayer over its well, is detected. An electrical lipid-thinning stimulus is selectively applied to the second portion of the cells but not to the first portion of the cells.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: November 5, 2019
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Ashraf Wahba, William Nielsen, J. William Maney, Jr., Kevin Aliado, Kyle Umeda, Roger J. A. Chen, Jing Luo
  • Publication number: 20190144934
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Application
    Filed: November 12, 2018
    Publication date: May 16, 2019
    Inventors: Ashraf Wahba, William Nielsen, Jing Luo, Kevin Aliado, Kyle Umeda, Roger J. A. Chen
  • Patent number: 10155979
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: December 18, 2018
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Ashraf Wahba, William Nielsen, Jing Luo, Kevin Aliado, Kyle Umeda, Roger J. A. Chen
  • Publication number: 20170283867
    Abstract: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A salt buffer solution is flowed over the array of cells in the nanopore based sequencing chip to substantially fill the wells in the cells with the salt buffer solution. A lipid and solvent mixture is flowed over the array of cells to deposit the lipid and solvent mixture over at least some of the wells in the cells. A first portion of the cells, each having a lipid bilayer over its well, is detected. A second portion of the cells, each having a lipid membrane but not a lipid bilayer over its well, is detected. An electrical lipid-thinning stimulus is selectively applied to the second portion of the cells but not to the first portion of the cells.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 5, 2017
    Inventors: Ashraf Wahba, William Nielsen, J. William Maney, JR., Kevin Aliado, Kyle Umeda, Roger J.A. Chen, Jing Luo
  • Publication number: 20170283866
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 5, 2017
    Inventors: Ashraf Wahba, William Nielsen, Jing Luo, Kevin Aliado, Kyle Umeda, Roger J.A. Chen