Patents by Inventor Kyoung Hee SHIN
Kyoung Hee SHIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230150822Abstract: Provided are reduced acylated graphene oxide as an electrode active material and a method for preparing the same. By the method for preparing reduced acylated graphene oxide according to the present invention, a negative electrode active material for a lithium secondary battery having stable activity and a high battery capacity may be prepared with a simple and low-cost process. In addition, the active material prepared by the preparation method has low resistance, a high battery capacity, and improved rate-limiting characteristics while having stable cycle characteristics.Type: ApplicationFiled: November 14, 2022Publication date: May 18, 2023Applicant: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Seung Hae HWANG, Chang-soo JIN, Kyoung-hee SHIN, Sun-hwa YEON, Se-Kook PARK, Dong Ha KIM
-
Publication number: 20220362732Abstract: Disclosed is a composite for forming a coacervate interfacial film. The composite for forming the coacervate interfacial film contains a cationic hectorite nanoplate-shaped particle structure containing a hectorite nanoplate-shaped particle and a cationic surfactant coupled to a surface of the hectorite nanoplate-shaped particle, and an anionic cellulose nanofibril containing an anionic functional group in at least a portion thereof, in which the composite may form the coacervate interfacial film at an interface of an oil phase and a water phase through electrostatic interaction between the cationic surfactant and the anionic functional group.Type: ApplicationFiled: May 10, 2022Publication date: November 17, 2022Inventors: Jin Woong Kim, Yeong Sik Cho, Ji Woo Bae, Hye Min Seo, Kyoung Hee Shin, Sung Ho Lee
-
Patent number: 10593982Abstract: Disclosed is a flow-type energy storage device having an improved flow of fluid. The flow-type energy storage device stores electricity using a fluidic material, and includes a reaction region in which charge-discharge reaction of electricity is performed by the fluidic material, wherein the reaction region has an octagonal cross-section. The shape of the reaction region is controlled to thus improve the flowability of the fluidic material, thereby providing a flow-type energy storage device that has almost constant electrical properties even when a charging and discharging cycle is repeatedly performed. Further, the structures of an inlet and an outlet are not complicated and a separate part for controlling the flow of fluid is not used in the device, and accordingly, additional costs are not incurred during a process of manufacturing the flow-type energy storage device.Type: GrantFiled: April 15, 2016Date of Patent: March 17, 2020Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Jae-Deok Jeon, Jung Joon Yoo, Hana Yoon, Chang-Soo Jin, Joon-Mok Shim, Jung-Hoon Yang, Kyu-Nam Jung, Dong-Ha Kim, Se-Kook Park
-
Patent number: 10439246Abstract: This invention relates to an electrode structure including a porous electrode that simultaneously performs the functions both of a bipolar plate and of a felt electrode and has a pattern layer or a mesh layer serving as a flow path on the surface thereof, a method of manufacturing the same, and a redox flow battery stack configuration for decreasing shunt current.Type: GrantFiled: April 7, 2017Date of Patent: October 8, 2019Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Chang-soo Jin, Kyoung-hee Shin, Sun-hwa Yeon, Bum-suk Lee, Sea Couk Park
-
Patent number: 10176932Abstract: A method of manufacturing a graphene composite including an ultrasonic-wave pulverization post-treatment process. The method includes radiating a microwave on a mixture of graphite oxide and a conducting agent, dispersing a resultant material, obtained during the radiating the microwave, in a liquid and performing ultrasonic-wave pulverization, and freeze-drying particles subjected to the ultrasonic-wave pulverization. The post-treatment process is added to the method of manufacturing the graphene composite including the reduced graphene oxide using the graphite oxide, thereby manufacturing a graphene composite having improved bindability with spherical activated carbon used to manufacture an active material. Further, the post-treated graphene composite is used to manufacture the active material and the supercapacitor, and accordingly, the active material can be thinly and densely applied to provide a supercapacitor having improved performance.Type: GrantFiled: August 16, 2016Date of Patent: January 8, 2019Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Sun-hwa Yeon, Myung-seok Jeon, Kyoung-hee Shin, Chang-soo Jin, Bum-suk Lee, Se-Kook Park, Dong-Ha Kim, Sang Ho Lee
-
Publication number: 20170294658Abstract: This invention relates to an electrode structure including a porous electrode that simultaneously performs the functions both of a bipolar plate and of a felt electrode and has a pattern layer or a mesh layer serving as a flow path on the surface thereof, a method of manufacturing the same, and a redox flow battery stack configuration for decreasing shunt current.Type: ApplicationFiled: April 7, 2017Publication date: October 12, 2017Applicant: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Chang-soo JIN, Kyoung-hee SHIN, Sun-hwa YEON, Bum-suk LEE, Sea Couk PARK
-
Patent number: 9761379Abstract: Disclosed herein is stack-type flow energy storage system. More particularly, the system includes a stack-type electrode cell composed of fluidic electrode material mixed with an electrolyte and storage tank for the electrode material, thereby remarkably improving stability, output and energy density. The stack-type flow energy storage system is advantageous in that unit cells, each consisting of a cathode, a separation membrane and an anode, are connected in parallel or in series to each other to make a stack cell, thus remarkably increasing output power. Further, the stack-type flow energy storage system is advantageous in that the sizes of slurry storage tanks connected to an electrode cell are adjusted, thus determining the required specification of energy density.Type: GrantFiled: July 18, 2014Date of Patent: September 12, 2017Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Jae-Deok Jeon, Se-Kook Park, Dae Wi Kim, Jung Joon Yoo, Hana Yoon, Sun-Dong Kim, Hyunuk Kim
-
Patent number: 9738523Abstract: Disclosed is a method of preparing a carbide-derived carbon having high ion mobility for use in a lithium battery anode material, a lithium air battery electrode, a supercapacitor electrode, and a flow capacitor electrode, including thermally treating a carbide compound in a vacuum, thus obtaining a vacuum-treated carbide compound; and thermochemically reacting the vacuum-treated carbide compound with a halogen element-containing gas, thus extracting the element other than carbon from the vacuum-treated carbide compound, wherein annealing can be further performed after thermochemical reaction. This carbide-derived carbon has a small pore distribution, dense graphite fringe, and a large lattice spacing and thus high ion mobility, compared to conventional carbide-derived carbon obtained only by thermochemical reaction with a halogen element-containing gas.Type: GrantFiled: November 12, 2014Date of Patent: August 22, 2017Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Chang-Soo Jin, Kyu-Nam Jung, Sukeun Yoon, Jae-Deok Jeon, Joonmok Shim, Jung-Hoon Yang, Bum-Suk Lee, Myung Seok Jeon, Wook Ahn
-
Patent number: 9653746Abstract: A manifold for a redox flow battery capable of effectively suppressing a shunt current has a supply flow pathway and an exhaust flow pathway respectively formed at a left side and a right side of an anode or cathode electrode electrolyte reaction unit so as to include a U-shaped curved portion, and the U-shaped curved portion is formed to be positioned on the upper part of the top or the lower part of the bottom of the first electrode electrolyte reaction unit. When the manifold is applied to a redox flow battery, the supply flow pathway and the exhaust flow pathway having the U-shaped curved portion are formed on the upper part of the top or the lower part of the bottom of the electrode electrolyte reaction unit to prevent an electrolyte existing in the inside of a stack and a pipe from passing through the U-shaped curved portion.Type: GrantFiled: January 25, 2013Date of Patent: May 16, 2017Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Chang-Soo Jin, Jae-Deok Jeon, Bum-Suk Lee, Joonmok Shim, Kyoung-Hee Shin, Sea-Couk Park, Myung Seok Jeon, Kyu-Nam Jung, Sun-Hwa Yeon, Sukeun Yoon
-
Patent number: 9634329Abstract: Disclosed herein is a method of preparing porous graphene from porous graphite, including 1) thermochemically reacting a highly crystalline carbide compound with a halogen element-containing gas to give a porous carbide-derived carbon; 2) treating the carbide-derived carbon with an acid, thus preparing a carbide-derived carbon oxide; and 3) reducing the carbide-derived carbon oxide. An anode mixture for a secondary battery including the graphene and an anode for a secondary battery including the anode mixture are also provided.Type: GrantFiled: November 12, 2014Date of Patent: April 25, 2017Assignee: Korea Institute of Energy ResearchInventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Chang-Soo Jin, Kyu-Nam Jung, Jae-Deok Jeon, Joonmok Shim, Jung-Hoon Yang, Bum-Suk Lee, Myung Seok Jeon, Wook Ahn
-
Patent number: 9579634Abstract: Disclosed is a method for preparing a metal catalyst having improved yield of alcohols. The method for preparing a metal catalyst for the production of alcohol from synthesis gas includes forming a metal catalyst; and irradiating the metal catalyst with gamma rays. The metal catalyst has improved yield of alcohols by stabilizing the metal catalyst through gamma ray irradiation to inhibit generation of hydrocarbons in catalytic reaction with synthesis gas.Type: GrantFiled: October 8, 2013Date of Patent: February 28, 2017Assignee: Korea Institute of Energy ResearchInventors: Sun-Hwa Yeon, Dae-Hyun Shin, Nam-Sun Nho, Kyoung-Hee Shin, Chang-Soo Jin, Sung-Chan Nam, Je-Kyoung Woo, Kwang-Ho Kim
-
Publication number: 20170053749Abstract: Disclosed is a method of manufacturing a graphene composite including an ultrasonic-wave pulverization post-treatment process. The method includes radiating a microwave on a mixture of graphite oxide and a conducting agent, dispersing a resultant material, obtained during the radiating the microwave, in a liquid and performing ultrasonic-wave pulverization, and freeze-drying particles subjected to the ultrasonic-wave pulverization. In the present invention, the post-treatment process is added to the method of manufacturing the graphene composite including the reduced graphene oxide using the graphite oxide, thereby manufacturing a graphene composite having improved bindability with spherical activated carbon used to manufacture an active material. Further, the post-treated graphene composite is used to manufacture the active material and the supercapacitor, and accordingly, the active material can be thinly and densely applied to provide a supercapacitor having improved performance.Type: ApplicationFiled: August 16, 2016Publication date: February 23, 2017Inventors: Sun-hwa Yeon, Myung-seok Jeon, Kyoung-hee Shin, Chang-soo Jin, Bum-suk Lee, Se-Kook Park, Dong-Ha Kim, Sang Ho Lee
-
Publication number: 20160308236Abstract: Disclosed is a flow-type energy storage device having an improved flow of fluid. The flow-type energy storage device stores electricity using a fluidic material, and includes a reaction region in which charge-discharge reaction of electricity is performed by the fluidic material, wherein the reaction region has an octagonal cross-section. The shape of the reaction region is controlled to thus improve the flowability of the fluidic material, thereby providing a flow-type energy storage device that has almost constant electrical properties even when a charging and discharging cycle is repeatedly performed. Further, the structures of an inlet and an outlet are not complicated and a separate part for controlling the flow of fluid is not used in the device, and accordingly, additional costs are not incurred during a process of manufacturing the flow-type energy storage device.Type: ApplicationFiled: April 15, 2016Publication date: October 20, 2016Applicant: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Sun-Hwa YEON, Kyoung-Hee SHIN, Jae-Deok JEON, Jung Joon YOO, Hana YOON, Chang-Soo JIN, Joon-Mok SHIM, Jung-Hoon YANG, Kyu-Nam JUNG, Dong-Ha KIM, Se-Kook PARK
-
Publication number: 20160130146Abstract: Disclosed is a method of preparing a carbide-derived carbon having high ion mobility for use in a lithium battery anode material, a lithium air battery electrode, a supercapacitor electrode, and a flow capacitor electrode, including thermally treating a carbide compound in a vacuum, thus obtaining a vacuum-treated carbide compound; and thermochemically reacting the vacuum-treated carbide compound with a halogen element-containing gas, thus extracting the element other than carbon from the vacuum-treated carbide compound, wherein annealing can be further performed after thermochemical reaction. This carbide-derived carbon has a small pore distribution, dense graphite fringe, and a large lattice spacing and thus high ion mobility, compared to conventional carbide-derived carbon obtained only by thermochemical reaction with a halogen element-containing gas.Type: ApplicationFiled: November 12, 2014Publication date: May 12, 2016Inventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Chang-Soo Jin, Kyu-Nam Jung, Sukeun Yoon, Jae-Deok Jeon, Joonmok Shim, Jung-Hoon Yang, Bum-Suk Lee, Myung Seok Jeon, Wook Ahn
-
Patent number: 9266739Abstract: Disclosed is a method for preparing a carbide-derived carbon-based anode active material. The method includes preparing carbide-derived carbon, and expanding pores of the carbide-derived carbon. Here, expanding of pores is performed as an activation process of heating the prepared carbide-derived carbon in the air. The pores formed inside the carbide-derived carbon can be expanded during the activation process in the preparation of the carbide-derived carbon-based anode active material. In addition, by applying the carbide-derived carbon to an anode active material, lithium secondary battery having improved charge-discharge efficiency can be prepared.Type: GrantFiled: October 30, 2013Date of Patent: February 23, 2016Assignee: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Chang-Soo Jin, Kyu-Nam Jung, Sukeun Yoon, Jae-Deok Jeon, Joonmok Shim, Jung-Hoon Yang, Bum-Suk Lee, Myung Seok Jeon
-
Publication number: 20150221959Abstract: A laminated structure of a redox flow cell, an integrated complex electrode cell, and a redox flow cell comprising same, wherein the integrated complex cell can reduce stack lamination process time and lamination cost and increase lamination efficiency by integrating a manifold and a bipolar plate in order to facilitate lamination. The integrated complex electrode cell having an inner seal structure, which inhibits the overflow of electrolytes, is characterized in that it inhibits the overflow of electrolytes of positive and negative poles by forming a structure in which an integrated part of the manifold and the bipolar plate can be sealed.Type: ApplicationFiled: January 30, 2013Publication date: August 6, 2015Inventors: Chang-Soo Jin, Jae-Deok Jeon, Bum-Suk Lee, Joonmok Shim, Kyoung-Hee Shin, Sea-Couk Park, Myung Seok Jeon, Kyu-Nam Jung, Sun-Hwa Yeon, Sukeun Yoon
-
Publication number: 20150180074Abstract: A manifold for a redox flow battery capable of effectively suppressing a shunt current has a supply flow pathway and an exhaust flow pathway respectively formed at a left side and a right side of an anode or cathode electrode electrolyte reaction unit so as to include a U-shaped curved portion, and the U-shaped curved portion is formed to be positioned on the upper part of the top or the lower part of the bottom of the first electrode electrolyte reaction unit. When the manifold is applied to a redox flow battery, the supply flow pathway and the exhaust flow pathway having the U-shaped curved portion are formed on the upper part of the top or the lower part of the bottom of the electrode electrolyte reaction unit to prevent an electrolyte existing in the inside of a stack and a pipe from passing through the U-shaped curved portion.Type: ApplicationFiled: January 25, 2013Publication date: June 25, 2015Applicant: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Chang-Soo Jin, Jae-Deok Jeon, Bum-Suk Lee, Joonmok Shim, Kyoung-Hee Shin, Sea-Couk Park, Myung Seok Jeon, Kyu-Nam Jung, Sun-Hwa Yeon, Sukeun Yoon
-
Publication number: 20150179355Abstract: Disclosed herein is stack-type flow energy storage system. More particularly, the system includes a stack-type electrode cell composed of fluidic electrode material mixed with an electrolyte and storage tank for the electrode material, thereby remarkably improving stability, output and energy density. The stack-type flow energy storage system is advantageous in that unit cells, each consisting of a cathode, a separation membrane and an anode, are connected in parallel or in series to each other to make a stack cell, thus remarkably increasing output power. Further, the stack-type flow energy storage system is advantageous in that the sizes of slurry storage tanks connected to an electrode cell are adjusted, thus determining the required specification of energy density.Type: ApplicationFiled: July 18, 2014Publication date: June 25, 2015Inventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Jae-Deok Jeon, Se-Kook Park, Dae Wi Kim, Jung Joon Yoo, Hana Yoon, Sun-Dong Kim, Hyunuk Kim
-
Publication number: 20150132654Abstract: Disclosed herein is a method of preparing porous graphene from porous graphite, including 1) thermochemically reacting a highly crystalline carbide compound with a halogen element-containing gas to give a porous carbide-derived carbon; 2) treating the carbide-derived carbon with an acid, thus preparing a carbide-derived carbon oxide; and 3) reducing the carbide-derived carbon oxide. An anode mixture for a secondary battery including the graphene and an anode for a secondary battery including the anode mixture are also provided.Type: ApplicationFiled: November 12, 2014Publication date: May 14, 2015Inventors: Sun-Hwa Yeon, Kyoung-Hee Shin, Chang-Soo Jin, Kyu-Nam Jung, Jae-Deok Jeon, Joonmok Shim, Jung-Hoon Yang, Bum-Suk Lee, Myung Seok Jeon, Wook Ahn
-
Publication number: 20140134494Abstract: Disclosed is a method for preparing a carbide-derived carbon-based anode active material. The method includes preparing carbide-derived carbon, and expanding pores of the carbide-derived carbon. Here, expanding of pores is performed as an activation process of heating the prepared carbide-derived carbon in the air. The pores formed inside the carbide-derived carbon can be expanded during the activation process in the preparation of the carbide-derived carbon-based anode active material. In addition, by applying the carbide-derived carbon to an anode active material, lithium secondary battery having improved charge-discharge efficiency can be prepared.Type: ApplicationFiled: October 30, 2013Publication date: May 15, 2014Applicant: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Sun-Hwa YEON, Kyoung-Hee SHIN, Chang-Soo JIN, Kyu-Nam JUNG, Sukeun YOON, Jae-Deok JEON, Joonmok SHIM, Jung-Hoon YANG, Bum-Suk LEE, Myung Seok JEON