Patents by Inventor Kyoung-yeon KIM
Kyoung-yeon KIM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12215194Abstract: Provided are a method for producing a polyamide including an amide-based molecular weight controller and a polyamide produced thereby, wherein the amide-based molecular weight controller may easily control the molecular weight of the polyamide to have a narrow molecular weight distribution so as to prevent an increase in the molecular weight due to a basic intermediate produced in anionic polymerization and a side reaction generated under a high-temperature polymerization condition.Type: GrantFiled: October 30, 2018Date of Patent: February 4, 2025Assignee: HANWHA SOLUTIONS CORPORATIONInventors: Kyung Ho Kwon, Seung Hoe Do, Jin Seo Lee, Dae Hak Kim, Kyoung Won Yim, Do Kyoung Kim, Hye Yeon Lee
-
Publication number: 20250022857Abstract: In one example, an electronic device can include a first redistribution structure. A first electronic component can be disposed on a first side of the first redistribution structure. A first passive component can be on a second side of the first redistribution structure with the first redistribution structure between the first passive component and the first electronic component. A first internal interconnect can be adjacent a lateral side of the first redistribution structure and coupled to the first redistribution structure. A second internal interconnect can be adjacent a lateral side of the first passive component and coupled to the first redistribution structure. An antenna substrate can be disposed over a first side of the first electronic component. A second redistribution structure can be disposed over a second side of the first electronic component. Other examples and related methods are also disclosed herein.Type: ApplicationFiled: July 10, 2023Publication date: January 16, 2025Applicant: Amkor Technology Singapore Holding Pte. Ltd.Inventors: Kyoung Yeon Lee, Byong Jin Kim, Ji Yeon Ryu
-
Patent number: 9666706Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: GrantFiled: July 14, 2016Date of Patent: May 30, 2017Assignee: Samsung Electronics Co., Ltd.Inventors: Young-jin Cho, Kyoung-yeon Kim, Sang-moon Lee, Ki-ha Hong, Eui-chul Hwang
-
Publication number: 20160322488Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: ApplicationFiled: July 14, 2016Publication date: November 3, 2016Applicant: Samsung Electronics Co., Ltd.Inventors: Young-jin CHO, Kyoung-yeon KIM, Sang-moon LEE, Ki-ha HONG, Eui-chul HWANG
-
Patent number: 9419094Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: GrantFiled: March 14, 2016Date of Patent: August 16, 2016Assignee: Samsung Electronics Co., Ltd.Inventors: Young-jin Cho, Kyoung-yeon Kim, Sang-moon Lee, Ki-ha Hong, Eui-chul Hwang
-
Publication number: 20160197161Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: ApplicationFiled: March 14, 2016Publication date: July 7, 2016Inventors: Young-jin CHO, Kyoung-yeon KIM, Sang-moon LEE, Ki-ha HONG, Eui-chul HWANG
-
Patent number: 9343564Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: GrantFiled: May 21, 2015Date of Patent: May 17, 2016Assignee: Samsung Electronics Co., Ltd.Inventors: Young-jin Cho, Kyoung-yeon Kim, Sang-moon Lee, Ki-ha Hong, Eui-chul Hwang
-
Patent number: 9324852Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: GrantFiled: February 16, 2015Date of Patent: April 26, 2016Assignee: Samsung Electronics Co., Ltd.Inventors: Young-jin Cho, Kyoung-yeon Kim, Sang-moon Lee, Ki-ha Hong, Eui-chul Hwang
-
Patent number: 9231093Abstract: A high electron mobility transistor (HEMT) according to example embodiments includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a Schottky electrode forming a Schottky contact with the channel supply layer. An upper surface of the channel supply layer may define a Schottky electrode accommodation unit. At least part of the Schottky electrode may be in the Schottky electrode accommodation unit. The Schottky electrode is electrically connected to the source electrode.Type: GrantFiled: March 14, 2013Date of Patent: January 5, 2016Assignee: Samsung Electronics Co., Ltd.Inventors: Woo-chul Jeon, Kyoung-yeon Kim, Jong-seob Kim, Joon-yong Kim, Ki-yeol Park, Young-hwan Park, Jai-kwang Shin, Jae-joon Oh, Hyuk-soon Choi, Jong-bong Ha, Sun-kyu Hwang, In-jun Hwang
-
Publication number: 20150255592Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: ApplicationFiled: May 21, 2015Publication date: September 10, 2015Inventors: Young-jin CHO, Kyoung-yeon KIM, Sang-moon LEE, Ki-ha HONG, Eui-chul HWANG
-
Patent number: 9117890Abstract: According to example embodiments, a HEMT includes a channel supply layer on a channel layer, a p-type semiconductor structure on the channel supply layer, a gate electrode on the p-type semiconductor structure, and source and drain electrodes spaced apart from two sides of the gate electrode respectively. The channel supply layer may have a higher energy bandgap than the channel layer. The p-type semiconductor structure may have an energy bandgap that is different than the channel supply layer. The p-type semiconductor structure may include a hole injection layer (HIL) on the channel supply layer and be configured to inject holes into at least one of the channel layer and the channel supply in an on state. The p-type semiconductor structure may include a depletion forming layer on part of the HIL. The depletion forming layer may have a dopant concentration that is different than the dopant concentration of the HIL.Type: GrantFiled: June 5, 2013Date of Patent: August 25, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Jong-seob Kim, Kyoung-yeon Kim, Joon-yong Kim, Jai-kwang Shin, Jae-joon Oh, Hyuk-soon Choi, Jong-bong Ha, Sun-kyu Hwang, In-jun Hwang
-
Publication number: 20150200285Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: ApplicationFiled: February 16, 2015Publication date: July 16, 2015Inventors: Young-jin CHO, Kyoung-yeon KIM, Sang-moon LEE, Ki-ha HONG, Eui-chul HWANG
-
Patent number: 9070706Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: GrantFiled: September 12, 2012Date of Patent: June 30, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Young-jin Cho, Kyoung-yeon Kim, Sang-moon Lee, Ki-ha Hong, Eui-chul Hwang
-
Patent number: 8890212Abstract: According to example embodiments, a normally-off high electron mobility transistor (HEMT) includes: a channel layer having a first nitride semiconductor, a channel supply layer on the channel layer, a source electrode and a drain electrode at sides of the channel supply layer, a depletion-forming layer on the channel supply layer, a gate insulating layer on the depletion-forming layer, and a gate electrode on the gate insulation layer. The channel supply layer includes a second nitride semiconductor and is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured has at least two thicknesses and is configured to form a depletion region in at least a partial region of the 2DEG. The gate electrode contacts the depletion-forming layer.Type: GrantFiled: May 1, 2013Date of Patent: November 18, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Woo-chul Jeon, Young-hwan Park, Jae-joon Oh, Kyoung-yeon Kim, Joon-yong Kim, Ki-yeol Park, Jai-kwang Shin, Sun-kyu Hwang
-
Publication number: 20140097470Abstract: According to example embodiments, a HEMT includes a channel supply layer on a channel layer, a p-type semiconductor structure on the channel supply layer, a gate electrode on the p-type semiconductor structure, and source and drain electrodes spaced apart from two sides of the gate electrode respectively. The channel supply layer may have a higher energy bandgap than the channel layer. The p-type semiconductor structure may have an energy bandgap that is different than the channel supply layer. The p-type semiconductor structure may include a hole injection layer (HIL) on the channel supply layer and be configured to inject holes into at least one of the channel layer and the channel supply in an on state. The p-type semiconductor structure may include a depletion forming layer on part of the HIL. The depletion forming layer may have a dopant concentration that is different than the dopant concentration of the HIL.Type: ApplicationFiled: June 5, 2013Publication date: April 10, 2014Inventors: Jong-seob KIM, Kyoung-yeon KIM, Joon-yong KIM, Jai-kwang SHIN, Jae-joon OH, Hyuk-soon CHOI, Jong-bong HA, Sun-kyu HWANG, In-jun HWANG
-
Publication number: 20140091363Abstract: According to example embodiments, a normally-off high electron mobility transistor (HEMT) includes: a channel layer having a first nitride semiconductor, a channel supply layer on the channel layer, a source electrode and a drain electrode at sides of the channel supply layer, a depletion-forming layer on the channel supply layer, a gate insulating layer on the depletion-forming layer, and a gate electrode on the gate insulation layer. The channel supply layer includes a second nitride semiconductor and is configured to induce a two-dimensional electron gas (2DEG) in the channel layer. The depletion-forming layer is configured has at least two thicknesses and is configured to form a depletion region in at least a partial region of the 2DEG. The gate electrode contacts the depletion-forming layer.Type: ApplicationFiled: May 1, 2013Publication date: April 3, 2014Applicant: Samsung Electronics Co., Ltd.Inventors: Woo-chul JEON, Young-hwan PARK, Jae-joon OH, Kyoung-yeon KIM, Joon-yong KIM, Ki-yeol PARK, Jai-kwang SHIN, Sun-kyu HWANG
-
Publication number: 20140021511Abstract: A high electron mobility transistor (HEMT) according to example embodiments includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a Schottky electrode forming a Schottky contact with the channel supply layer. An upper surface of the channel supply layer may define a Schottky electrode accommodation unit. At least part of the Schottky electrode may be in the Schottky electrode accommodation unit. The Schottky electrode is electrically connected to the source electrode.Type: ApplicationFiled: March 14, 2013Publication date: January 23, 2014Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Woo-chul JEON, Kyoung-yeon KIM, Jong-seob KIM, Joon-yong KIM, Ki-yeol PARK, Young-hwan PARK, Jai-kwang SHIN, Jae-joon OH, Hyuk-soon CHOI, Jong-bong HA, Sun-kyu HWANG, In-jun HWANG
-
Publication number: 20130307026Abstract: According to example embodiments, High electron mobility transistors (HEMTs) may include a discontinuation region in a channel region. The discontinuation region may include a plurality of 2DEG unit regions that are spaced apart from one another. The discontinuation region may be formed at an interface between two semiconductor layers or adjacent to the interface. The discontinuation region may be formed by an uneven structure or a plurality of recess regions or a plurality of ion implantation regions. The plurality of 2DEG unit regions may have a nanoscale structure. The plurality of 2DEG unit regions may be formed in a dot pattern, a stripe pattern, or a staggered pattern.Type: ApplicationFiled: January 29, 2013Publication date: November 21, 2013Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Sun-kyu HWANG, Jai-kwang SHIN, Hyuk-soon CHOI, Jong-seob KIM, Jae-joon OH, Jong-bong HA, In-jun HWANG, Kyoung-yeon KIM
-
Publication number: 20130119347Abstract: A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.Type: ApplicationFiled: September 12, 2012Publication date: May 16, 2013Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Young-jin CHO, Kyoung-yeon KIM, Sang-moon LEE, Ki-ha HONG, Eui-chul HWANG