Patents by Inventor Kyousuke DOUMAE

Kyousuke DOUMAE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11557754
    Abstract: A positive electrode active material for a lithium secondary battery, comprising a lithium-containing composite metal oxide in the form of secondary particles formed by aggregation of primary particles capable of being doped and undoped with lithium ions, each of the secondary particles having on its surface a coating layer, the positive electrode active material satisfying the following requirements (1) to (3): (1) the metal oxide has an ?-NaFeO2 type crystal structure of following formula (A): Lia(NibCocM11-b-c)O2??(A) wherein 0.9?a?1.2, 0.9?b<1, 0<c?0.1, 0.9<b+c?1, and M1 represents at least one optional metal selected from Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In and Sn; (2) the coating layer comprises Li and M2, wherein M2 represents at least one optional metal selected from Al, Ti, Zr and W; and (3) the active material has an average secondary particle diameter of 2 to 20 ?m, a BET specific surface area of 0.1 to 2.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: January 17, 2023
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Tetsuri Nakayama, Kenji Takamori, Kyousuke Doumae, Takashi Kitamoto
  • Patent number: 11552295
    Abstract: A lithium-manganese composite oxide containing a lithium-iron-manganese composite oxide represented by the composition formula. Li1+x?w(FeyNizMn1?y?z)1?xO2??, where 0<x<?, 0?w<0.8, 0<y<1, 0<z<0.5, y+z<1, and 0??<0.5, in which at least in a state of charge of a lithium ion battery using the lithium-manganese composite oxide as a positive-electrode active material, at least some of iron atoms are pentavalent.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: January 10, 2023
    Assignee: NEC CORPORATION
    Inventors: Ryota Yuge, Mitsuharu Tabuchi, Kyousuke Doumae, Hideka Shibuya
  • Publication number: 20210167382
    Abstract: A lithium-manganese composite oxide containing a lithium-iron-manganese composite oxide represented by the composition formula. Li1+x?w(FeyNizMn1?y?z)1?xO2??, where 0<x<1/3, 0?w<0.8, 0<y<1, 0<z<0.5, y+z<1, and 0??<0.5, in which at least in a state of charge of a lithium ion battery using the lithium-manganese composite oxide as a positive-electrode active material, at least some of iron atoms are pentavalent.
    Type: Application
    Filed: February 4, 2021
    Publication date: June 3, 2021
    Applicant: NEC CORPORATION
    Inventors: Ryota YUGE, Mitsuharu Tabuchi, Kyousuke Doumae, Hideka Shibuya
  • Publication number: 20200403226
    Abstract: The invention discloses a positive electrode active material for a magnesium secondary battery or lithium ion secondary battery, including: a particle including a nucleus and a crystal of vanadium oxide grown from the nucleus as a starting point and having a maximum length of 5 ?m or less in the major axis direction.
    Type: Application
    Filed: September 12, 2018
    Publication date: December 24, 2020
    Applicant: Sanoh Industrial Co., Ltd.
    Inventors: Koga-shi, ARAI, Kazuyuki SUGITA, Atsushi HONDA, Yuichiro TAKIMOTO, Hideki KURIHARA, Masashi INAMOTO, Kyousuke DOUMAE
  • Patent number: 10847788
    Abstract: There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is suppressed. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula is coated with an oxide of at least one metal selected from the group consisting of La, Pr, Nd, Sm and Eu: LixM1(y-p)MnpM2(z-q)FeqO(2-?) wherein 1.05?x?1.32, 0.33?y?0.63, 0.06?z?0.50, 0<p?0.63, 0.06?q?0.50, 0???0.80, y?p, and z?q; M1 is at least one element selected from Ti and Zr; and M2 is at least one element selected from the group consisting of Co, Ni and Mn.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: November 24, 2020
    Assignees: NEC Corporation, Tanaka Chemical Corporation
    Inventors: Ryota Yuge, Noriyuki Tamura, Sadanori Hattori, Mitsuharu Tabuchi, Kentaro Kuratani, Kyousuke Doumae, Hideka Shibuya
  • Patent number: 10535875
    Abstract: A positive electrode active material, which has a crystallite size ?/crystallite size ? ratio (?/?) of 1 to 1.75 or less, wherein the crystallite size ? is within a peak region of 2?=18.7±1° and the crystallite size ? is within a peak region of 2?=44.6±1°, each determined by a powder X-ray diffraction measurement using Cu-K? ray, and has a composition represented by formula (I) below: Li[Lix(NiaCobMncMd)1-x]O2??(I) wherein 0?x?0.2, 0.3<a<0.7, 0<b<0.4, 0<c<0.4, 0?d<0.1, a+b+c+d=1, and M is at least one metal selected from the group consisting of Fe, Cr, Ti, Mg, Al and Zr.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: January 14, 2020
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Kenji Takamori, Hiroyuki Kurita, Yuichiro Imanari, Daisuke Yamashita, Kimiyasu Nakao, Kyousuke Doumae
  • Publication number: 20200006768
    Abstract: A lithium-manganese composite oxide containing a lithium-iron-manganese composite oxide represented by the composition formula: Li1+x?w(FeyNizMn1?y?z)1?xO2??, where 0<x<?, 0?w<0.8, 0<y<1, 0<z<0.5, y+z<1, and 0??<0.5, in which at least in a state of charge of a lithium ion battery using the lithium-manganese composite oxide as a positive-electrode active material, at least some of iron atoms are pentavalent.
    Type: Application
    Filed: January 31, 2018
    Publication date: January 2, 2020
    Applicant: NEC CORPORATION
    Inventors: Ryota YUGE, Mitsuharu TABUCHI, Kyousuke DOUMAE, Hideka SHIBUYA
  • Patent number: 10164250
    Abstract: There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is reduced. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula (1) is coated with an inorganic material: LixM1(y-p)MnpM2(z-p)FeqO(2-?) (1) (wherein 1.05?x?1.32, 0.33?y?0.63, 0.06?z?0.50, 0<p?0.63, 0.06?q?0.50, 0???0.80, y?p, and z?q; M1 is at least one element selected from Ti and Zr; and M2 is at least one element selected from the group consisting of Co, Ni and Mn).
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: December 25, 2018
    Assignees: NEC Corporation, Tanaka Chemical Corporation
    Inventors: Kentaro Nakahara, Ryota Yuge, Noriyuki Tamura, Sadanori Hattori, Kentaro Kuratani, Kyousuke Doumae, Hideka Shibuya, Mitsuharu Tabuchi
  • Publication number: 20180069236
    Abstract: There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is suppressed. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula is coated with an oxide of at least one metal selected from the group consisting of La, Pr, Nd, Sm and Eu: LixM1(y-p)MnpM2(z-q)FeqO(2-?) wherein 1.05?x?1.32, 0.33?y?0.63, 0.06?z?0.50, 0<p?0.63, 0.06?q?0.50, 0???0.80, y?p, and z?q; M1 is at least one element selected from Ti and Zr; and M2 is at least one element selected from the group consisting of Co, Ni and Mn.
    Type: Application
    Filed: February 9, 2016
    Publication date: March 8, 2018
    Applicants: NEC Corporation, Tanaka Chemical Corporation
    Inventors: Ryota YUGE, Noriyuki TAMURA, Sadanori HATTORI, Mitsuharu TABUCHI, Kentaro KURATANI, Kyousuke DOUMAE, Hideka SHIBUYA
  • Publication number: 20170237069
    Abstract: A positive electrode active material, which has a crystallite size ?/crystallite size ? ratio (?/?) of 1 to 1.75 or less, wherein the crystallite size ? is within a peak region of 2?=18.7±1° and the crystallite size ? is within a peak region of 2?=44.6±1°, each determined by a powder X-ray diffraction measurement using Cu-K? ray, and has a composition represented by formula (I) below: Li[Lix(NiaCobMncMd)1-x]O2??(I) wherein 0?x?0.2, 0.3<a<0.7, 0<b<0.4, 0<c<0.4, 0?d<0.1, a+b+c+d=1, and M is at least one metal selected from the group consisting of Fe, Cr, Ti, Mg, Al and Zr.
    Type: Application
    Filed: October 13, 2015
    Publication date: August 17, 2017
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Kenji TAKAMORI, Hiroyuki KURITA, Yuichiro IMANARI, Daisuke YAMASHITA, Kimiyasu NAKAO, Kyousuke DOUMAE
  • Publication number: 20160380263
    Abstract: A positive electrode active material for a lithium secondary battery, comprising a lithium-containing composite metal oxide in the form of secondary particles formed by aggregation of primary particles capable of being doped and undoped with lithium ions, each of the secondary particles having on its surface a coating layer, the positive electrode active material satisfying the following requirements (1) to (3): (1) the metal oxide has an ?-NaFeO2 type crystal structure of following formula (A): Lia(NibCocM11-b-c)O2??(A) wherein 0.9?a?1.2, 0.9?b<1, 0<c?0.1, 0.9<b+c?1, and M1 represents at least one optional metal selected from Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In and Sn; (2) the coating layer comprises Li and M2, wherein M2 represents at least one optional metal selected from Al, Ti, Zr and W; and (3) the active material has an average secondary particle diameter of 2 to 20 ?m, a BET specific surface area of 0.1 to 2.
    Type: Application
    Filed: January 26, 2015
    Publication date: December 29, 2016
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, TANAKA CHEMICAL CORPORATION
    Inventors: Tetsuri NAKAYAMA, Kenji TAKAMORI, Kyousuke DOUMAE, Takashi KITAMOTO
  • Publication number: 20160218360
    Abstract: There is provided a lithium-iron-manganese-based composite oxide capable of providing a lithium-ion secondary battery which has a high capacity retention rate in charge/discharge cycles and in which the generation of a gas caused by charge/discharge cycles is reduced. A lithium-iron-manganese-based composite oxide having a layered rock-salt structure, wherein at least a part of the surface of a lithium-iron-manganese-based composite oxide represented by the following formula (1) is coated with an inorganic material: LixM1(y-p)MnpM2(z-p)FeqO(2-?) (1) (wherein 1.05?x?1.32, 0.33?y?0.63, 0.06?z?0.50, 0<p?0.63, 0.06?q?0.50, 0???0.80, y?p, and z?q; M1 is at least one element selected from Ti and Zr; and M2 is at least one element selected from the group consisting of Co, Ni and Mn).
    Type: Application
    Filed: August 19, 2014
    Publication date: July 28, 2016
    Applicants: NEC Corporation, Tanaka Chemical Corporation
    Inventors: Kentaro NAKAHARA, Ryota YUGE, Noriyuki TAMURA, Sadanori HATTORI, Kentaro KURATANI, Kyousuke DOUMAE, Hideka SHIBUYA, Mitsuharu TABUCHI