Patents by Inventor Kyris Agapiou

Kyris Agapiou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10351753
    Abstract: Corrosion-resistant refractory binder compositions may include high alumina cement, high-alumina refractory aluminosilicate material, and phosphorous material. Examples of high-alumina refractory aluminosilicate material include crushed firebrick, firebrick grog, refractory mortar, fire clay, mullite, fused mullite, and combinations thereof. The binder composition may be mixed with sufficient amount of fluid such as water to form a slurry and introduced into a wellbore penetrating a subterranean formation, where it may be allowed to set at a point downhole. Such compositions, once set, may exhibit enhanced corrosion and heat resistance. Such compositions, once set, may additionally be cured. Curing may take place at higher temperatures and/or pressures, and may furthermore increase temperature resistance and/or strength of the set binder composition.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: July 16, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Kyris Agapiou, Ben Iverson, Sam Lewis
  • Patent number: 9796903
    Abstract: Corrosion-resistant refractory binder compositions may be formed with a calcium ion source, high-alumina refractory aluminosilicate pozzolan, and water. Any one or more of such components may individually be non-cementitious. Examples of high-alumina refractory aluminosilicate pozzolan include crushed firebrick; firebrick grog; and mixtures of silicate and any one or more of corundum, high-alumina ceramic, and bauxite; refractory mortar; fire clay; mullite; fused mullite; and combinations thereof, among others. A binder composition may be mixed with sufficient amount of water to form a slurry, which slurry may be introduced into a subterranean formation (e.g., via a wellbore penetrating the subterranean formation). A plurality of the non-cementitious components may react in the presence of water when exposed to suitable conditions so as to enable the binder composition to set. Such compositions, once set, may exhibit enhanced corrosion and/or heat resistance as compared to other binder compositions.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 24, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Kyris Agapiou, Ben Iverson
  • Publication number: 20160298016
    Abstract: Corrosion-resistant refractory binder compositions may include high alumina cement, high-alumina refractory aluminosilicate material, and phosphorous material. Examples of high-alumina refractory aluminosilicate material include crushed firebrick, firebrick grog, refractory mortar, fire clay, mullite, fused mullite, and combinations thereof. The binder composition may be mixed with sufficient amount of fluid such as water to form a slurry and introduced into a wellbore penetrating a subterranean formation, where it may be allowed to set at a point downhole. Such compositions, once set, may exhibit enhanced corrosion and heat resistance. Such compositions, once set, may additionally be cured. Curing may take place at higher temperatures and/or pressures, and may furthermore increase temperature resistance and/or strength of the set binder composition.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 13, 2016
    Inventors: Kyris Agapiou, Ben Iverson, Sam Lewis
  • Publication number: 20160289531
    Abstract: Corrosion-resistant refractory binder compositions may be formed with a calcium ion source, high-alumina refractory aluminosilicate pozzolan, and water. Any one or more of such components may individually be non-cementitious. Examples of high-alumina refractory aluminosilicate pozzolan include crushed firebrick; firebrick grog; and mixtures of silicate and any one or more of corundum, high-alumina ceramic, and bauxite; refractory mortar; fire clay; mullite; fused mullite; and combinations thereof, among others. A binder composition may be mixed with sufficient amount of water to form a slurry, which slurry may be introduced into a subterranean formation (e.g., via a wellbore penetrating the subterranean formation). A plurality of the non-cementitious components may react in the presence of water when exposed to suitable conditions so as to enable the binder composition to set. Such compositions, once set, may exhibit enhanced corrosion and/or heat resistance as compared to other binder compositions.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 6, 2016
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Kyris Agapiou, Ben Iverson