Patents by Inventor Kyrre Eeg Emblem

Kyrre Eeg Emblem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8718747
    Abstract: The invention provides a method, an image analysis software product, and a system for medical imaging analysis for estimating contrast agent extravasation in contrast agent based perfusion imaging such as MRI dynamic contrast enhanced (DCE) imaging, and in particular correction, compensation, or visualization of extravascular leakage of contrast agent in tumors. According to the invention, the effect of extravasation is directly manifested in the tail part of an observed, apparent residue function, R?(t), obtained directly by de-convoluting the expression C(t)=R?(t)Cp?(t) with the arterial input function (AIF). A leakage rate or extravasation constant is determined directly from the tail part of the determined apparent residue function.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: May 6, 2014
    Assignee: Oslo Universitetssykehus HF
    Inventors: Atle Bjørnerud, Kyrre Eeg Emblem
  • Patent number: 8428327
    Abstract: The invention relates to segmenting blood vessels in perfusion MR images, more particularly, the invention relates to automated vessel removal in identified tumor regions prior to tumor grading. Pixels from a perfusion related map from dynamic contrast enhancement (DCE) MR images are clustered into arterial pixels and venous pixels by e.g. a k-means class cluster analysis. The analysis applies parameters representing the degree to which the tissue entirely consists of blood (such as relative blood volume (rBV), peak enhancement (?R2max) and/or post first-pass enhancement level (?R2p)) and parameters representing contrast arrival time at the tissue (such as first moment of the area (fmAUC) and/or contrast arrival time (T0)). The artery and venous pixels are used to form a vessel mask. The invention also relates to a computer aided diagnostic (CAD) system for tumor grading, comprising automated tumor segmentation, vessel segmentation, and tumor grading.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: April 23, 2013
    Assignee: Oslo Universitetssykehus HF
    Inventors: Atle Bjørnerud, Kyrre Eeg Emblem
  • Patent number: 8233965
    Abstract: An embodiment of the invention is to make possible a non-invasive grading of a tumor based on parameters determined from a frequency distribution (histogram) of values in a map representing cerebral blood volume (CBV) or cellular metabolism in the tumor. The method is especially applicable to brain tumors such as gliomas where histological grading is difficult. The invention provides a precise and consistent grading since it relies on values selected from the whole tumor (not just from hot spots); since it takes the diversity or heterogeneity of the vascularization into account by analyzing the frequency distribution (not just a mean value); and since it involves and allows for a more automated procedure wherein any subjective contributions from human operators is not critical to the resulting grading. CBV maps may be obtained by perfusion imaging using MRI or CT scanning. Cellular metabolism maps may be obtained from a glucose metabolism map obtained by positron emission tomography (PET).
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: July 31, 2012
    Assignee: Oslo Universitetssykehus HF
    Inventors: Atle Bjørnerud, Kyrre Eeg Emblem
  • Publication number: 20110257519
    Abstract: The invention provides a method, an image analysis software product, and a system for medical imaging analysis for estimating contrast agent extravasation in contrast agent based perfusion imaging such as MRI dynamic contrast enhanced (DCE) imaging, and in particular correction, compensation, or visualization of extravascular leakage of contrast agent in tumors. According to the invention, the effect of extravasation is directly manifested in the tail part of an observed, apparent residue function, R?(t), obtained directly by de-convoluting the expression C(t)=R?(t)Cp?(t) with the arterial input function (AIF). A leakage rate or extravasation constant is determined directly from the tail part of the determined apparent residue function.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 20, 2011
    Applicant: OSLO UNIVERSITETSSYKEHUS HF
    Inventors: Atle Bj?rnerud, Kyrre Eeg Emblem
  • Publication number: 20110170759
    Abstract: The invention relates to segmenting blood vessels in perfusion MR images, more particularly, the invention relates to automated vessel removal in identified tumor regions prior to tumor grading. Pixels from a perfusion related map from dynamic contrast enhancement (DCE) MR images are clustered into arterial pixels and venous pixels by e.g. a k-means class cluster analysis. The analysis applies parameters representing the degree to which the tissue entirely consists of blood (such as relative blood volume (rBV), peak enhancement (?R2max) and/or post first-pass enhancement level (?R2p)) and parameters representing contrast arrival time at the tissue (such as first moment of the area (fmAUC) and/or contrast arrival time (T0)). The artery and venous pixels are used to form a vessel mask. The invention also relates to a computer aided diagnostic (CAD) system for tumor grading, comprising automated tumor segmentation, vessel segmentation, and tumor grading.
    Type: Application
    Filed: May 7, 2009
    Publication date: July 14, 2011
    Applicant: Oslo Universitetssykehus HF
    Inventors: Atle Bjørnerud, Kyrre Eeg Emblem
  • Publication number: 20080221441
    Abstract: An embodiment of the invention is to make possible a non-invasive grading of a tumor based on parameters determined from a frequency distribution (histogram) of values in a map representing cerebral blood volume (CBV) or cellular metabolism in the tumour. The method is especially applicable to brain tumors such as gliomas where histological grading is difficult. The invention provides a precise and consistent grading since it relies on values selected from the whole tumor (not just from hot spots); since it takes the diversity or heterogeneity of the vascularization into account by analyzing the frequency distribution (not just a mean value); and since it involves and allows for a more automated procedure wherein any subjective contributions from human operators is not critical to the resulting grading. CBV maps may be obtained by perfusion imaging using MRI or CT scanning. Cellular metabolism maps may be obtained from a glucose metabolism map obtained by positron emission tomography (PET).
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Inventors: Atle Bjornerud, Kyrre Eeg Emblem