Patents by Inventor Kyu-Tae Lee

Kyu-Tae Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200023906
    Abstract: A cloaking device assembly comprises an object-side, an image-side, a reference optical axis extending from the object-side to the image-side, a cloaked region positioned between the object-side and the image-side and a cloaked article positioned within the cloaked region. An object-side converging lens is positioned on the object-side, an image-side converging lens is positioned on the image-side, and a hexagonal prism is positioned within the cloaked region between the object-side converging lens and the image-side converging lens. Light from an object positioned on the object-side of the cloaking device and obscured by the cloaked region propagates through the object-side converging lens, the hexagonal prism, and the image-side converging lens to form an image of the object on the image-side of the cloaking device such that the cloaked region and the cloaked article within the cloaked region do not appear to be positioned between the object and the image.
    Type: Application
    Filed: April 4, 2018
    Publication date: January 23, 2020
    Inventors: Kyu-Tae Lee, Mindy Zhang, Songtao Wu, Debasish Banerjee
  • Patent number: 10527831
    Abstract: A cloaking device includes an object-side, an image-side and an apex axis extending from the object-side to the image-side. An object-side cloaking region (CR) planar reflection boundary having an outward facing mirror surface and an inward facing surface, and an image-side CR planar reflection boundary having an outward facing mirror surface and an inward facing surface, are included. A cloaking region is bounded by inward facing surfaces of the object-side CR planar reflection boundary and the image-side CR planar reflection boundary. At least one exterior curved reflection boundary with an inward facing mirror surface is spaced apart from the object-side CR planar reflection boundary and the image-side CR planar reflection boundary. A centrally positioned planar reflection boundary with an outward facing mirror surface is positioned between the objects-side and image-side CR planar reflection boundaries and faces the inward facing mirror surface of the at least one exterior curved reflection boundary.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: January 7, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Kyu-Tae Lee, Debasish Banerjee
  • Patent number: 10511015
    Abstract: The present invention relates to a metal electrode, a method for preparing the same, and an electrochemical device comprising the same, and particularly, the present invention provides a metal electrode comprising a lithium or sodium metal electrode of which coating thickness can be controlled to a nano size, on which electrochemical active material, phosphorene in the form of two-dimensional monolayer thin film, or a multilayer thin film in which two or more layers of phosphorene are stacked is coated, a method for preparing the same, and an electrochemical device comprising the same.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: December 17, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Kyu Tae Lee, Young Jin Kim, Seong Mo Oh
  • Patent number: 10479276
    Abstract: A cloaking device includes an object-side, an image-side, a cloaked region (CR) between the object-side and the image-side. An object-side CR reflection boundary, an object-side half-mirror, and an object-side multiband dichroic color filter are positioned on the object side and an image-side CR reflection boundary, an image-side half-mirror, and an image-side multiband dichroic color filter are positioned on the image-side. The object-side half-mirror and the object-side multiband dichroic color filter are spaced apart from and positioned generally parallel to the object-side CR reflection boundary, and the image-side half-mirror and the image-side multiband dichroic color filter are spaced apart from and positioned generally parallel to the image-side CR reflection boundary. Light from an object located on the object-side of the cloaking device and obscured by the CR propagates via three optical paths to form an image of the object on the image-side of the cloaking device.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: November 19, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Chengang Ji, Kyu-Tae Lee, Songtao Wu, Debasish Banerjee
  • Publication number: 20190346593
    Abstract: A liquid lens according to an embodiment includes a first plate comprising a cavity in which a conductive liquid and a non-conductive liquid are disposed, the cavity having an inclined surface; a first electrode disposed on the inclined surface; a second electrode disposed on the first plate; and a black insulation layer disposed between the first electrode and the conductive liquid, wherein the conductive liquid and the non-conductive liquid form an interface therebetween, and the interface moves along one surface of the black insulation layer.
    Type: Application
    Filed: January 8, 2018
    Publication date: November 14, 2019
    Inventors: Kyu Tae LEE, Seong Su EOM
  • Publication number: 20190324346
    Abstract: A liquid lens may include a first plate which accommodates a conductive liquid and a non-conductive liquid, has an opening formed therein and having a predetermined inclined surface, and is formed from silicon; a first electrode disposed on the first plate; a second electrode disposed under the first plate; a second plate disposed on the first electrode; a third plate disposed under the second electrode; and a light s blocking layer disposed between the first plate and the third plate.
    Type: Application
    Filed: January 5, 2018
    Publication date: October 24, 2019
    Inventor: Kyu Tae LEE
  • Publication number: 20190322218
    Abstract: A cloaking device comprises an object-side, an image-side, a cloaked region between the object-side and the image-side. An object-side optical component and an object-side tilt correction (TC) component are positioned on the object-side, and an image-side optical component and an image-side TC component are positioned on the image-side. The cloaking device is tilted relative to an object positioned on the object-side such that light from the object is incident on the cloaking device at an acute angle. The object-side TC component redirects light from the object incident on the cloaking device such that the light propagates through the cloaking device generally normal to the object-side and image-side optical components. The image-side TC component redirects light propagating through the cloaking device back to normal to the object to form an image of the object on the image-side of the cloaking device which, if not for the TC components, would be distorted.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 24, 2019
    Inventors: Kyu-Tae Lee, Songtao Wu, Debasish Banerjee
  • Patent number: 10444480
    Abstract: A cloaking device includes an object-side, an image-side, a cloaked region and eight prisms positioned around the cloaked region. Each of the prisms has a light entrance side, a light exit side, a vertex formed from the intersection of a plane defined by the light entrance side and a plane defined by the light exit side, and a vertex angle between the light entrance side and the light exit side. A pair of first object-side prisms with inward facing vertices and a pair of second object-side prisms with outward facing vertices are positioned on the object-side, and a pair of first image-side prisms with outward facing vertices and a pair of second image-side prisms with inward facing vertices are positioned on the image-side. The light entrance sides of the pair of second object-side prisms are parallel and spaced apart from the light exit sides of the pair of first object-side prisms.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: October 15, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Kyu-Tae Lee, Debasish Banerjee
  • Publication number: 20190308557
    Abstract: A cloaking device with an object-side, an image-side, and a cloaked region is provided. A first object-side converging lens and a second object-side converging lens are positioned on the object-side, and a first image-side converging lens and a second image-side converging lens are positioned on the image-side. A coherent image guide with an object-side end optically aligned with the second object-side converging lens and an image-side end optically aligned with the second image-side converging lens is included. Light from an object positioned on the object-side of the cloaking device is focused in parallel onto the object-side end of the coherent image guide by the first object-side converging lens and the second object-side converging lens, propagates through the coherent image guide, and is focused in parallel by the second image-side converging lens and the first image-side converging lens to form an image of the object on the image-side of the cloaking device.
    Type: Application
    Filed: April 5, 2018
    Publication date: October 10, 2019
    Inventors: Kyu-Tae Lee, Mindy Zhang, Debasish Banerjee, Songtao Wu
  • Publication number: 20190310450
    Abstract: A cloaking device includes an object-side, an image-side, a cloaked region (CR) between the object-side and the image-side. An object-side CR reflection boundary, an object-side half-mirror, and an object-side multiband dichroic color filter are positioned on the object side and an image-side CR reflection boundary, an image-side half-mirror, and an image-side multiband dichroic color filter are positioned on the image-side. The object-side half-mirror and the object-side multiband dichroic color filter are spaced apart from and positioned generally parallel to the object-side CR reflection boundary, and the image-side half-mirror and the image-side multiband dichroic color filter are spaced apart from and positioned generally parallel to the image-side CR reflection boundary. Light from an object located on the object-side of the cloaking device and obscured by the CR propagates via three optical paths to form an image of the object on the image-side of the cloaking device.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Inventors: Chengang Ji, Kyu-Tae Lee, Songtao Wu, Debasish Banerjee
  • Patent number: 10421402
    Abstract: A cloaking device includes an object-side, an image-side, a cloaked region (CR) between the object-side and the image-side, and a reference optical axis extending from the object-side to the image-side. An object-side CR reflection boundary, an object-side half-mirror, and an object-side color filter are positioned on the object side and an image-side CR reflection boundary, an image-side half-mirror, and an image-side color filter are positioned on the image-side. The object-side half-mirror and the object-side color filter are spaced apart from and positioned generally parallel to the object-side CR reflection boundary, and the image-side half-mirror and the image-side color filter are spaced apart from and positioned generally parallel to the image-side CR reflection boundary. Light from an object located on the object-side of the cloaking device and obscured by the CR propagates via three optical paths to form an image of the object on the image-side of the cloaking device.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: September 24, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Kyu-Tae Lee, Chengang Ji, Debasish Banerjee
  • Publication number: 20190235143
    Abstract: A cloaking device includes an object-side, an image-side, a cloaked region (CR) between the object-side and the image-side. An object-side CR reflection boundary and a plurality of object-side color filters are positioned on the object side and an image-side CR reflection boundary and a plurality of image-side color filters are positioned on the image-side. The plurality of object-side color filters are spaced apart from and positioned generally parallel to the object-side CR reflection boundary, and the plurality of image-side color filters are spaced apart from and positioned generally parallel to the image-side CR reflection boundary. The plurality of object-side color filters and the plurality of image-side color filters may be co-planar and light from an object located on the object-side of the cloaking device propagates via at least two optical paths to form an image of the object on the image-side of the cloaking device.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 1, 2019
    Inventors: Chengang Ji, Kyu-Tae Lee, Debasish Banerjee
  • Patent number: 10351062
    Abstract: A cloaking device includes an object-side, an image-side, and a cloaked region (CR) between the object-side and the image-side. An object-side CR reflection boundary, an object-side half-mirror, and an object-side external reflection boundary are positioned on the object-side, and an image-side CR reflection boundary, an image-side half-mirror, and an image-side external reflection boundary are positioned on the image-side. The object-side half-mirror and the object-side external reflection boundary are spaced apart and generally parallel to the object-side CR reflection boundary, and the image-side half-mirror and the image-side external reflection boundary are spaced apart and generally parallel to the image-side CR reflection boundary. Light from an object located on the object-side of the cloaking device and obscured by the CR is redirected around the CR via two optical paths to form an image of the object on the image-side of the cloaking device.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: July 16, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Kyu-Tae Lee, Chengang Ji, Songtao Wu, Debasish Banerjee
  • Patent number: 10351063
    Abstract: A cloaking device includes an object-side, an image-side and a cloaked region between the object side and image-side. An object-side half Fresnel lens, an image-side half Fresnel lens and a planar reflection boundary positioned between the object-side half Fresnel lens and the image-side half Fresnel lens are included. The object-side half Fresnel lens and the image-side half Fresnel lens each comprise an inward facing surface and an outward facing Fresnel surface. The planar reflection boundary comprises an inward facing mirror surface. Light from an object positioned on the object-side of the cloaking device and obscured by the cloaked region is redirected around the cloaked region by the object-side half Fresnel lens, planar reflection boundary and image-side half Fresnel lens to form an image of the object on the image-side of the cloaking device such that the light from the object appears to pass through the cloaked region.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: July 16, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Chengang Ji, Kyu-Tae Lee, Debasish Banerjee
  • Publication number: 20190210527
    Abstract: A cloaking device includes an object-side, an image-side and a cloaked region between the object side and image-side. An object-side half Fresnel lens, an image-side half Fresnel lens and a planar reflection boundary positioned between the object-side half Fresnel lens and the image-side half Fresnel lens are included. The object-side half Fresnel lens and the image-side half Fresnel lens each comprise an inward facing surface and an outward facing Fresnel surface. The planar reflection boundary comprises an inward facing mirror surface. Light from an object positioned on the object-side of the cloaking device and obscured by the cloaked region is redirected around the cloaked region by the object-side half Fresnel lens, planar reflection boundary and image-side half Fresnel lens to form an image of the object on the image-side of the cloaking device such that the light from the object appears to pass through the cloaked region.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 11, 2019
    Inventors: Chengang Ji, Kyu-Tae Lee, Debasish Banerjee
  • Patent number: 10345605
    Abstract: A cloaking device includes an object-side, an image-side and a cloaked region between the object-side and the image-side. An object-side polyhedron with an entrance side and an exit side parallel to the entrance side is positioned on the object-side and an image-side polyhedron with an entrance side and an exit side parallel to the entrance side is positioned on the image-side. The entrance side of the object-side polyhedron is oriented relative to a reference optical axis extending between the object-side and the image-side at an acute angle ? and the exit side of the image-side polyhedron is oriented relative to the reference optical axis at an oblique angle equal to 180°??. Light from an object positioned on the object-side of the cloaking device is redirected around the cloaked region, without total internal reflection of the light within the object-side polyhedron or the image-side polyhedron.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: July 9, 2019
    Assignee: Toyota Motor Engineering & Manufacturing North America
    Inventors: Kyu-Tae Lee, Chengang Ji, Songtao Wu, Debasish Banerjee
  • Patent number: 10317685
    Abstract: A cloaking device includes an object-side, an image-side, a cloaked region (CR) between the object-side and the image-side, and a reference optical axis extending from the object-side to the image-side. An object-side CR reflection boundary and an object-side optical component sub-assembly are positioned on the object-side and an image-side CR reflection boundary and an image-side optical component sub-assembly are positioned on the image-side. The object-side optical component sub-assembly includes an object-side outward-positioned half-mirror, an object-side inward-positioned half-mirror, and at least one of an object-side outward-positioned reflection boundary and an object-side half-wave plate. The image-side optical component sub-assembly includes an image-side outward-positioned half-mirror, an image-side inward-positioned half-mirror, and at least one of an image-side outward-positioned reflection boundary and an image-side half-wave plate.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: June 11, 2019
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Kyu-Tae Lee, Chengang Ji, Debasish Banerjee
  • Publication number: 20190155042
    Abstract: A cloaking device includes an object-side, an image-side, a cloaked region (CR) between the object-side and the image-side, and a reference optical axis extending from the object-side to the image-side. An object-side CR reflection boundary and an object-side optical component sub-assembly are positioned on the object-side and an image-side CR reflection boundary and an image-side optical component sub-assembly are positioned on the image-side. The object-side optical component sub-assembly includes an object-side outward-positioned half-mirror, an object-side inward-positioned half-mirror, and at least one of an object-side outward-positioned reflection boundary and an object-side half-wave plate. The image-side optical component sub-assembly includes an image-side outward-positioned half-mirror, an image-side inward-positioned half-mirror, and at least one of an image-side outward-positioned reflection boundary and an image-side half-wave plate.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 23, 2019
    Inventors: Kyu-Tae Lee, Chengang Ji, Debasish Banerjee
  • Publication number: 20190143897
    Abstract: A cloaking device includes an object-side, an image-side, a cloaked region (CR) between the object-side and the image-side, and a reference optical axis extending from the object-side to the image-side. An object-side CR reflection boundary, an object-side half-mirror, and an object-side color filter are positioned on the object side and an image-side CR reflection boundary, an image-side half-mirror, and an image-side color filter are positioned on the image-side. The object-side half-mirror and the object-side color filter are spaced apart from and positioned generally parallel to the object-side CR reflection boundary, and the image-side half-mirror and the image-side color filter are spaced apart from and positioned generally parallel to the image-side CR reflection boundary. Light from an object located on the object-side of the cloaking device and obscured by the CR propagates via three optical paths to form an image of the object on the image-side of the cloaking device.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 16, 2019
    Inventors: Kyu-Tae Lee, Chengang Ji, Debasish Banerjee
  • Publication number: 20190146196
    Abstract: A cloaking device includes an object-side, an image-side, and a cloaked region (CR) between the object-side and the image-side. An object-side CR reflection boundary, an object-side half-mirror, and an object-side external reflection boundary are positioned on the object-side, and an image-side CR reflection boundary, an image-side half-mirror, and an image-side external reflection boundary are positioned on the image-side. The object-side half-mirror and the object-side external reflection boundary are spaced apart and generally parallel to the object-side CR reflection boundary, and the image-side half-mirror and the image-side external reflection boundary are spaced apart and generally parallel to the image-side CR reflection boundary. Light from an object located on the object-side of the cloaking device and obscured by the CR is redirected around the CR via two optical paths to form an image of the object on the image-side of the cloaking device.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 16, 2019
    Inventors: Kyu-Tae Lee, Chengang Ji, Songtao Wu, Debasish Banerjee