Patents by Inventor Kyung Ae Moon

Kyung Ae Moon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949881
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: April 2, 2024
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Patent number: 11330274
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: May 10, 2022
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Publication number: 20210218973
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 15, 2021
    Applicants: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon JEONG, Hae-Chul CHOI, Jeong-Il SEO, Seung-Kwon BEACK, In-Seon JANG, Jae-Gon KIM, Kyung-Ae MOON, Dae-Young JANG, Jin-Woo HONG, Jin-Woong KIM, Yung-Lyul LEE, Dong-Gyu SIM, Seoung-Jun OH, Chang-Beom AHN, Dae-Yeon KIM, Dong-Kyun KIM
  • Publication number: 20210218972
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 15, 2021
    Applicants: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon JEONG, Hae-Chul CHOI, Jeong-Il SEO, Seung-Kwon BEACK, In-Seon JANG, Jae-Gon KIM, Kyung-Ae MOON, Dae-Young JANG, Jin-Woo HONG, Jin-Woong KIM, Yung-Lyul LEE, Dong-Gyu SIM, Seoung-Jun OH, Chang-Beom AHN, Dae-Yeon KIM, Dong-Kyun KIM
  • Patent number: 10499064
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: December 3, 2019
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Publication number: 20190297331
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Applicants: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon JEONG, Hae-Chul CHOI, Jeong-Il SEO, Seung-Kwon BEACK, In-Seon JANG, Jae-Gon KIM, Kyung-Ae MOON, Dae-Young JANG, Jin-Woo HONG, Jin-Woong KIM, Yung-Lyul LEE, Dong-Gyu SIM, Seoung-Jun OH, Chang-Beom AHN, Dae-Yeon KIM, Dong-Kyun KIM
  • Patent number: 10101707
    Abstract: Provided is a method and an apparatus for correcting a distortion of a three-dimensional (3D) hologram, in which the method is performed by the apparatus and includes generating a sliced two-dimensional (2D) section of a hologram by slicing the hologram while performing translation in an optical axis direction, obtaining a sharp sliced image of the hologram from a sequence of images of generated sliced 2D sections using a focusing function of a camera, and analyzing a distortion of the obtained sliced image, and using such a method and apparatus may enable correction of a distortion of a 3D hologram independently from a display structure.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: October 16, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Tae One Kim, Hyun Eui Kim, Jae Han Kim, Jin Woong Kim, Kyung Ae Moon, Jin Soo Choi
  • Publication number: 20180292785
    Abstract: Provided are an apparatus and a method for displaying a hologram image based on pupil tracking, wherein a hologram image display apparatus includes a location determiner to determine a location of a user using a captured image of the user and a hologram information reconstructor to reconstruct first hologram information as second hologram information optimized for the location of the user to reproduce the hologram image.
    Type: Application
    Filed: November 5, 2014
    Publication date: October 11, 2018
    Inventors: Hyon Gon CHOO, Kyung Ae MOON, Min Sik PARK, Hyun Eui KIM, Jin Woong KIM
  • Patent number: 9906767
    Abstract: Disclosed is an apparatus and method for digital holographic table top display. The digital holographic table top display apparatus includes: a camera array configured to capture a plurality of channel images in an omni-directional range from a table by using a plurality of cameras; a controller configured to detect an observer from the plurality of channel images and to track a position of pupils of the observer in at least one channel image from which the observer is detected; and a display configured to reproduce a digital holographic image in a three-dimensional (3D) space according to the tracked position of the pupils.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: February 27, 2018
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyon Gon Choo, Soo Hyun Lee, Jin Woong Kim, Kyung Ae Moon
  • Publication number: 20180041763
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Applicants: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon JEONG, Hae-Chul CHOI, Jeong-Il SEO, Seung-Kwon BEACK, In-Seon JANG, Jae-Gon KIM, Kyung-Ae MOON, Dae-Young JANG, Jin-Woo HONG, Jin-Woong KIM, Yung-Lyul LEE, Dong-Gyu SIM, Seoung-Jun OH, Chang-Beom AHN, Dae-Yeon KIM, Dong-Kyun KIM
  • Patent number: 9869971
    Abstract: Provided is a hologram generation method including receiving three-dimensional (3D) data information, determining a first projection position onto which the 3D data information is projected on a hologram plane corresponding to a first spatial light modulator (SLM), and a second projection position onto which the 3D data information is projected on a hologram plane corresponding to a second SLM, generating a first Fresnel zone plate (FZP) pattern corresponding to the first projection position, and determining the first FZP pattern to be an FZP pattern corresponding to the second projection position.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: January 16, 2018
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Eun Young Chang, Soo Hyun Lee, Jin Woong Kim, Tae One Kim, Kyung Ae Moon, Joong Ki Park
  • Patent number: 9819942
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: November 14, 2017
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute For Industry Cooperation, Industry-Academic Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Patent number: 9756317
    Abstract: The present invention discloses a holographic display apparatus including a light irradiating unit configured to irradiate light using an optical fiber array backlight, a spatial light modulator (SLM) configured to perform modulating the irradiated light, a lens configured to irradiate hologram images based on the modulated light, a pupil tracking unit configured to acquire location of an observer's pupil by pupil tracking, and a hologram generating unit configured to generate parallax hologram images that correspond to the location of pupil.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: September 5, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyun Eui Kim, Jin Woong Kim, Kyung Ae Moon, Min Sik Park
  • Patent number: 9736484
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: August 15, 2017
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute For Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Patent number: 9500470
    Abstract: An apparatus and a method for measuring quality of a holographic image are disclosed. The apparatus for measuring the quality of the holographic image may include an obtaining unit to obtain a hologram, a reconstruction unit to reconstruct a three-dimensional (3D) holographic image by irradiating the hologram with a light source, a measuring unit to measure depth of the reconstructed holographic image, and an analysis unit to analyze depth representation quality of the holographic image base on the measured depth of the holographic image.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: November 22, 2016
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Soo Hyun Lee, Je Ho Nam, Jin Woong Kim, Kyung Ae Moon, Eun Young Jang
  • Publication number: 20160216691
    Abstract: A hologram projection apparatus using Risley prism is provided, the apparatus including a spatial light modulator (SLM) configured to output light incident from a light source through modulation into a hologram image, a light deflector configured to deflect the light output by the SLM according to a location of a pupil of a user, and a fixed-focus lens configured to project the hologram image on a focal plane using the deflected light.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 28, 2016
    Inventors: Hyun Eui KIM, Min Sik PARK, Jae Han KIM, Jin Woong KIM, Kyung Ae MOON
  • Publication number: 20160216692
    Abstract: Provided is a hologram projection apparatus using an aspheric mirror, the apparatus including a spatial light modulator (SLM), a first mirror, a motor, and a second mirror, wherein the first mirror is configured to reflect modulated light output by the SLM, the motor is configured to rotate the first mirror, the second mirror is configured to reflect the modulated light reflected from the rotated first mirror, and the modulated light reflected from the second mirror, based on a degree of rotation of the first mirror, forms a consecutive viewing window in a horizontal direction.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 28, 2016
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hyun Eui KIM, Min Sik PARK, Jae Han KIM, Jin Woong KIM, Kyung Ae MOON
  • Publication number: 20160216690
    Abstract: Provided is a method and an apparatus for correcting a distortion of a three-dimensional (3D) hologram, in which the method is performed by the apparatus and includes generating a sliced two-dimensional (2D) section of a hologram by slicing the hologram while performing translation in an optical axis direction, obtaining a sharp sliced image of the hologram from a sequence of images of generated sliced 2D sections using a focusing function of a camera, and analyzing a distortion of the obtained sliced image, and using such a method and apparatus may enable correction of a distortion of a 3D hologram independently from a display structure.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 28, 2016
    Inventors: Tae One KIM, Hyun Eui KIM, Jae Han KIM, Jin Woong KIM, Kyung Ae MOON, Jin Soo CHOI
  • Publication number: 20160195850
    Abstract: Provided is a hologram generation method including receiving three-dimensional (3D) data information, determining a first projection position onto which the 3D data information is projected on a hologram plane corresponding to a first spatial light modulator (SLM), and a second projection position onto which the 3D data information is projected on a hologram plane corresponding to a second SLM, generating a first Fresnel zone plate (FZP) pattern corresponding to the first projection position, and determining the first FZP pattern to be an FZP pattern corresponding to the second projection position.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 7, 2016
    Inventors: Eun Young CHANG, Soo Hyun LEE, Jin Woong KIM, Tae One KIM, Kyung Ae MOON, Joong Ki PARK
  • Publication number: 20160105658
    Abstract: Disclosed is an apparatus and method for digital holographic table top display. The digital holographic table top display apparatus includes: a camera array configured to capture a plurality of channel images in an omni-directional range from a table by using a plurality of cameras; a controller configured to detect an observer from the plurality of channel images and to track a position of pupils of the observer in at least one channel image from which the observer is detected; and a display configured to reproduce a digital holographic image in a three-dimensional (3D) space according to the tracked position of the pupils.
    Type: Application
    Filed: October 14, 2015
    Publication date: April 14, 2016
    Inventors: Hyon Gon CHOO, Soo Hyun LEE, Jin Woong KIM, Kyung Ae MOON