Patents by Inventor Kyung Jae Jeong

Kyung Jae Jeong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11359086
    Abstract: Provided is a thermoplastic resin composition which comprises: a first copolymer comprising an alkyl acrylate-based rubber polymer, aromatic vinyl-based units, and vinyl cyan-based units; a second copolymer comprising an alkyl acrylate-based rubber polymer, aromatic vinyl-based units, and vinyl cyan-based units; a third copolymer comprising aromatic vinyl-based units and vinyl cyan-based units; a fourth copolymer comprising aromatic vinyl-based units and vinyl cyan-based units; and a fifth copolymer comprising maleimide-based units, aromatic vinyl-based units, and vinyl cyan-based units, wherein the first and second copolymers comprise alkyl acrylate-based rubber polymers with mutually different average particle sizes, and the third and fourth copolymers have mutually different weight average molecular weights.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 14, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Tae Hoon Kim, Seong Lyong Kim, Kyung Jae Kwon, Joon Hwi Jo, Kyu Seong Jeong
  • Publication number: 20210261701
    Abstract: The present invention relates to the unexpected discovery of a cross-linked polymer of 2-hydroxyethyl methacrylate and dipicolylamine-containing monomers that can be used as a therapeutic lens to treat ocular diseases or disorders associated with matrix metalloproteinase (MMP) over-activity and/or over-expression, such as but not limited to corneal melting (or keratolysis).
    Type: Application
    Filed: June 28, 2019
    Publication date: August 26, 2021
    Inventors: JUNG-JAE LEE, KYUNG JAE JEONG
  • Patent number: 11065356
    Abstract: Nanoparticles as described herein are configured to bind to bacterial contaminants, such as Gram positive bacteria, Gram negative bacteria, and endotoxins. The nanoparticles include a core comprising a magnetic material; and a plurality of ligands attached to the core. The ligands include, for example, bis(dipicolylamine) (“DPA”) coordinated with a metal ion, e.g., Zn2+ or Cu2+, to form, e.g., bis-Zn-DPA or bis-Cu-DPA, which can bind to the bacterial contaminants. The nanoparticles can be included in compositions for use in methods and systems to separate bacterial contaminants from liquids, such as liquids, such as blood, e.g., whole or diluted blood, buffer solutions, albumin solutions, beverages for human and/or animal consumption, e.g., drinking water, liquid medications for humans and/or animals, or other liquids.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: July 20, 2021
    Assignees: Children's Medical Center Corporation, Massachusetts Institute of Technology
    Inventors: Jung-Jae Lee, Kyung Jae Jeong, Daniel S. Kohane
  • Publication number: 20200254142
    Abstract: Injectable macroporous hydrogels, and methods of producing same, are described. The injectable macroporous hydrogels may be formed by mixing gelatin microgels with an enzyme. In at least some embodiments, the enzyme may be transglutaminase, and more specifically microbial transglutaminase (mTG).
    Type: Application
    Filed: February 10, 2020
    Publication date: August 13, 2020
    Inventor: Kyung Jae Jeong
  • Publication number: 20190336635
    Abstract: Nanoparticles as described herein are configured to bind to bacterial contaminants, such as Gram positive bacteria, Gram negative bacteria, and endotoxins. The nanoparticles include a core comprising a magnetic material; and a plurality of ligands attached to the core. The ligands include, for example, bis(dipicolylamine) (“DPA”) coordinated with a metal ion, e.g., Zn2+ or Cu2+, to form, e.g., bis-Zn-DPA or bis-Cu-DPA, which can bind to the bacterial contaminants. The nanoparticles can be included in compositions for use in methods and systems to separate bacterial contaminants from liquids, such as liquids, such as blood, e.g., whole or diluted blood, buffer solutions, albumin solutions, beverages for human and/or animal consumption, e.g., drinking water, liquid medications for humans and/or animals, or other liquids.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Jung-Jae Lee, Kyung Jae Jeong, Daniel S. Kohane
  • Patent number: 10350320
    Abstract: Nanoparticles as described herein are configured to bind to bacterial contaminants, such as Gram positive bacteria, Gram negative bacteria, and endotoxins. The nanoparticles include a core comprising a magnetic material; and a plurality of ligands attached to the core. The ligands include, for example, bis(dipicolylamine) (“DPA”) coordinated with a metal ion, e.g., Zn2+ or Cu2+, to form, e.g., bis-Zn-DPA or bis-Cu-DPA, which can bind to the bacterial contaminants. The nanoparticles can be included in compositions for use in methods and systems to separate bacterial contaminants from liquids, such as liquids, such as blood, e.g., whole or diluted blood, buffer solutions, albumin solutions, beverages for human and/or animal consumption, e.g., drinking water, liquid medications for humans and/or animals, or other liquids.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: July 16, 2019
    Assignees: Children's Medical Center Corporation, Massachusetts Institute of Technology
    Inventors: Jung-Jae Lee, Kyung Jae Jeong, Daniel S. Kohane
  • Publication number: 20140212335
    Abstract: Nanoparticles as described herein are configured to bind to bacterial contaminants, such as Gram positive bacteria, Gram negative bacteria, and endotoxins. The nanoparticles include a core comprising a magnetic material; and a plurality of ligands attached to the core. The ligands include, for example, bis(dipicolylamine) (“DPA”) coordinated with a metal ion, e.g., Zn2+ or Cu2+, to form, e.g., bis-Zn-DPA or bis-Cu-DPA, which can bind to the bacterial contaminants. The nanoparticles can be included in compositions for use in methods and systems to separate bacterial contaminants from liquids, such as liquids, such as blood, e.g., whole or diluted blood, buffer solutions, albumin solutions, beverages for human and/or animal consumption, e.g., drinking water, liquid medications for humans and/or animals, or other liquids.
    Type: Application
    Filed: January 29, 2014
    Publication date: July 31, 2014
    Applicants: Massachusetts Institute of Technology, Children's Medical Center Corporation
    Inventors: Jung-Jae Lee, Kyung Jae Jeong, Daniel S. Kohane