Patents by Inventor Kyungjoong Jeong

Kyungjoong Jeong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200250450
    Abstract: A method for achieving better performance in an autonomous driving while saving computing powers, by using confidence scores representing a credibility of an object detection which is generated in parallel with an object detection process is provided. And the method includes steps of: (a) a computing device acquiring at least one circumstance image on surroundings of a subject vehicle, through at least one panorama view sensor installed on the subject vehicle; (b) the computing device instructing a Convolutional Neural Network (CNN) to apply at least one CNN operation to the circumstance image, to thereby generate initial object information and initial confidence information on the circumstance image; and (c) the computing device generating final object information on the circumstance image by referring to the initial object information and the initial confidence information.
    Type: Application
    Filed: December 31, 2019
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250853
    Abstract: A method for supporting at least one administrator to evaluate detecting processes of object detectors to provide logical grounds of an autonomous driving is provided. And the method includes steps of: (a) a computing device instructing convolutional layers, included in an object detecting CNN which has been trained before, to generate reference convolutional feature maps by applying convolutional operations to reference images inputted thereto, and instructing ROI pooling layers included therein to generate reference ROI-Pooled feature maps by pooling at least part of values corresponding to ROIs on the reference convolutional feature maps; and (b) the computing device instructing a representative selection unit to classify the reference ROI-Pooled feature maps by referring to information on classes of objects included in their corresponding ROIs on the reference images, and to generate at least one representative feature map per each class.
    Type: Application
    Filed: December 23, 2019
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200247434
    Abstract: A method for signaling a driving intention of an autonomous vehicle is provided. The method includes steps of: a driving intention signaling device (a) detecting a pedestrian ahead of the autonomous vehicle using surroundings video images, and determining whether the pedestrian crosses a roadway using a virtual crosswalk; (b) if the pedestrian crosses the roadway, estimating a crosswalking trajectory, corresponding to an expected path of the pedestrian, by referring to a moving trajectory of the pedestrian, setting a driving plan of the autonomous vehicle referring to driving information and the crosswalking trajectory, and allowing the autonomous vehicle to self-drive by the driving plan; and (c) determining whether the pedestrian pays attention to the autonomous vehicle by referring to gaze patterns and, if not, allowing delivery of the driving intention to the pedestrian and/or a nearby driver, via an external display and/or an external speaker.
    Type: Application
    Filed: December 31, 2019
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250848
    Abstract: A method for planning an autonomous driving by using a V2X communication and an image processing under a road circumstance where both vehicles capable of the V2X communication and vehicles incapable of the V2X communication exist is provided. And the method includes steps of: (a) a computing device, corresponding to a subject autonomous vehicle, instructing a planning module to acquire recognition information on surrounding vehicles including (i) first vehicles capable of a V2X communication and (ii) second vehicles incapable of the V2X communication; (b) the computing device instructing the planning module to select an interfering vehicle among the surrounding vehicles; and (c) the computing device instructing the planning module to generate a potential interference prediction model, and to modify current optimized route information in order to evade a potential interfering action, to thereby generate updated optimized route information of the subject autonomous vehicle.
    Type: Application
    Filed: December 23, 2019
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200249675
    Abstract: A method for providing a dynamic adaptive deep learning model other than a fixed deep learning model, to thereby support at least one specific autonomous vehicle to perform a proper autonomous driving according to surrounding circumstances is provided. And the method includes steps of: (a) a managing device which interworks with autonomous vehicles instructing a fine-tuning system to acquire a specific deep learning model to be updated; (b) the managing device inputting video data and its corresponding labeled data to the fine-tuning system as training data, to thereby update the specific deep learning model; and (c) the managing device instructing an automatic updating system to transmit the updated specific deep learning model to the specific autonomous vehicle, to thereby support the specific autonomous vehicle to perform the autonomous driving by using the updated specific deep learning model other than a legacy deep learning model.
    Type: Application
    Filed: January 9, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, Sukhoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250442
    Abstract: A method for achieving better performance in an autonomous driving while saving computing powers, by using confidence scores representing a credibility of an object detection which is generated in parallel with an object detection process is provided. And the method includes steps of: (a) a computing device acquiring at least one circumstance image on surroundings of a subject vehicle, through at least one panorama view sensor installed on the subject vehicle; (b) the computing device instructing a Convolutional Neural Network (CNN) to apply at least one CNN operation to the circumstance image, to thereby generate initial object information and initial confidence information on the circumstance image; and (c) the computing device generating final object information on the circumstance image by referring to the initial object information and the initial confidence information, with a support of an RL agent.
    Type: Application
    Filed: January 10, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250974
    Abstract: A method for detecting emergency vehicles in real time, and managing subject vehicles to support the emergency vehicles to drive without interferences from the subject vehicles by referring to detected information on the emergency vehicles is provided. And the method includes steps of: (a) a management server generating metadata on the specific emergency vehicle by referring to emergency circumstance information; (b) the management server generating a circumstance scenario vector by referring to the emergency circumstance information and the metadata, comparing the circumstance scenario vector with reference scenario vectors, to thereby find a specific scenario vector whose similarity score with the circumstance scenario vector is larger than a threshold, and acquiring an emergency reaction command by referring to the specific scenario vector; (c) the management server transmitting the emergency reaction command to each of the subject vehicles.
    Type: Application
    Filed: January 10, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, Sukhoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200249671
    Abstract: A learning method for providing a functional safety by warning a driver about a potential dangerous situation by using an explainable AI which verifies detection processes of a neural network for an autonomous driving is provided.
    Type: Application
    Filed: December 23, 2019
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200252550
    Abstract: A method for correcting an incorrect angle of a camera is provided. And the method includes steps of: (a) a computing device, generating first reference data or second reference data according to circumstance information by referring to a reference image; (b) the computing device generating a first angle error or a second angle error by referring to the first reference data or the second reference data with vehicle coordinate data; and (c) the computing device instructing a physical rotation module to adjust the incorrect angle by referring to the first angle error or the second angle error.
    Type: Application
    Filed: January 10, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250402
    Abstract: A method for face recognition by using a multiple patch combination based on a deep neural network is provided. The method includes steps of: a face-recognizing device, (a) if a face image with a 1-st size is acquired, inputting the face image into a feature extraction network, to allow the feature extraction network to generate a feature map by applying convolution operation to the face image with the 1-st size, and to generate multiple features by applying sliding-pooling operation to the feature map, wherein the feature extraction network has been learned to extract a feature using a face image for training having a 2-nd size and wherein the 2-nd size is smaller than the 1-st size; and (b) inputting the multiple features into a learned neural aggregation network, to allow the neural aggregation network to aggregate the multiple features and to output an optimal feature for the face recognition.
    Type: Application
    Filed: December 20, 2019
    Publication date: August 6, 2020
    Applicant: STRADVISION, INC.
    Inventors: Kye-Hyeon KIM, Yongjoong KIM, Hak-Kyoung KIM, Woonhyun NAM, SukHoon BOO, Myungchul SUNG, Dongsoo SHIN, Donghun YEO, Wooju RYU, Myeong-Chun LEE, Hyungsoo LEE, Taewoong JANG, Kyungjoong JEONG, Hongmo JE, Hojin CHO
  • Publication number: 20200250541
    Abstract: A learning method for supporting a safer autonomous driving through a fusion of information acquired from images and communications is provided. And the method includes steps of: (a) a learning device instructing a first neural network and a second neural network to generate an image-based feature map and a communication-based feature map by using a circumstance image and circumstance communication information; (b) the learning device instructing a third neural network to apply a third neural network operation to the image-based feature map and the communication-based feature map to generate an integrated feature map; (c) the learning device instructing a fourth neural network to apply a fourth neural network operation to the integrated feature map to generate estimated surrounding motion information; and (d) the learning device instructing a first loss layer to train parameters of the first to the fourth neural networks.
    Type: Application
    Filed: January 9, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, Sukhoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250486
    Abstract: A learning method for acquiring at least one personalized reward function, used for performing a Reinforcement Learning (RL) algorithm, corresponding to a personalized optimal policy for a subject driver is provided. And the method includes steps of: (a) a learning device performing a process of instructing an adjustment reward network to generate first adjustment rewards, by referring to the information on actual actions and actual circumstance vectors in driving trajectories, a process of instructing a common reward module to generate first common rewards by referring to the actual actions and the actual circumstance vectors, and a process of instructing an estimation network to generate actual prospective values by referring to the actual circumstance vectors; and (b) the learning device instructing a first loss layer to generate an adjustment reward and to perform backpropagation to learn parameters of the adjustment reward network.
    Type: Application
    Filed: January 10, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200249699
    Abstract: A method for switching driving modes of a subject vehicle to support the subject vehicle to perform a platoon driving by using platoon driving information is provided. And the method includes steps of: (a) a basement server, which interworks with the subject vehicle driving in a first mode, acquiring first platoon driving information, to N-th platoon driving information by referring to a real-time platoon driving information DB; (b) the basement server (i) calculating a first platoon driving suitability score to an N-th platoon driving suitability score by referring to first platoon driving parameters to N-th platoon driving parameters and (ii) selecting a target platoon driving group to be including the subject vehicle; (c) the basement server instructing the subject vehicle to drive in a second mode.
    Type: Application
    Filed: December 23, 2019
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250499
    Abstract: A method for integrating images from vehicles performing a cooperative driving is provided. The method includes steps of: a main driving image integrating device on one main vehicle (a) inputting one main driving image into a main object detector to (1) generate one main feature map by applying convolution operation via a main convolutional layer, (2) generate main ROIs via a main region proposal network, (3) generate main pooled feature maps by applying pooling operation via a main pooling layer, and (4) generate main object detection information on the main objects by applying fully-connected operation via a main fully connected layer; (b) inputting the main pooled feature maps into a main confidence network to generate main confidences; and (c) acquiring sub-object detection information and sub-confidences from sub-vehicles, and integrating the main object detection information and the sub-object detection information using the main & the sub-confidences to generate object detection result.
    Type: Application
    Filed: January 10, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, Sukhoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250514
    Abstract: A learning method for generating integrated object detection information by integrating first object detection information and second object detection information is provided. And the method includes steps of: (a) a learning device instructing a concatenating network to generate one or more pair feature vectors; (b) the learning device instructing a determining network to apply FC operations to the pair feature vectors, to thereby generate (i) determination vectors and (ii) box regression vectors; (c) the learning device instructing a loss unit to generate an integrated loss by referring to the determination vectors, the box regression vectors and their corresponding GTs, and performing backpropagation processes by using the integrated loss, to thereby learn at least part of parameters included in the DNN.
    Type: Application
    Filed: December 22, 2019
    Publication date: August 6, 2020
    Applicant: STRADVISION, INC.
    Inventors: Kye-Hyeon KIM, Yongjoong KIM, Hak-Kyoung KIM, Woonhyun NAM, SukHoon BOO, Myungchul SUNG, Dongsoo SHIN, Donghun YEO, Wooju RYU, Myeong-Chun LEE, Hyungsoo LEE, Taewoong JANG, Kyungjoong JEONG, Hongmo JE, Hojin CHO
  • Publication number: 20200247321
    Abstract: A method for adjusting a position of a driver assistance device according to a driver state is provided. The method includes steps of: a position adjusting device, (a) inputting an upper and a lower body images of a driver, acquired after the driver sits and starts a vehicle, into a pose estimation network, to acquire body keypoints, calculate body part lengths, and adjust a driver's seat position; and (b) while the vehicle is traveling, inputting the upper body image into a face detector to detect a facial part, inputting the facial part into an eye detector to detect an eye part, and inputting the adjusted driver's seat position and 2D coordinates of an eye into a 3D coordinates transforming device, to generate 3D coordinates of the eye referring to the 2D coordinates and the driver's seat position, and adjust a mirror position of the vehicle referring to the 3D coordinates.
    Type: Application
    Filed: January 9, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, Sukhoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200249676
    Abstract: A method for providing an autonomous driving service platform for autonomous vehicles by using a competitive computing and information fusion is provided.
    Type: Application
    Filed: January 9, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, Sukhoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250492
    Abstract: A method for learning an automatic labeling device for auto-labeling a base image of a base vehicle using sub-images of nearby vehicles is provided. The method includes steps of: a learning device inputting the base image and the sub-images into previous trained dense correspondence networks to generate dense correspondences; and into encoders to output convolution feature maps, inputting the convolution feature maps into decoders to output deconvolution feature maps; with an integer k from 1 to n, generating a k-th adjusted deconvolution feature map by translating coordinates of a (k+1)-th deconvolution feature map using a k-th dense correspondence; generating a concatenated feature map by concatenating the 1-st deconvolution feature map and the adjusted deconvolution feature maps; and inputting the concatenated feature map into a masking layer to output a semantic segmentation image and instructing a 1-st loss layer to calculate 1-st losses and updating decoder weights and encoder weights.
    Type: Application
    Filed: January 10, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, Sukhoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200250468
    Abstract: A method for training a CNN by using a camera and a radar together, to thereby allow the CNN to perform properly even when an object depiction ratio of a photographed image acquired through the camera is low due to a bad condition of a photographing circumstance is provided. And the method includes steps of: (a) a learning device instructing a convolutional layer to apply a convolutional operation to a multichannel integrated image, to thereby generate a feature map; (b) the learning device instructing an output layer to apply an output operation to the feature map, to thereby generate estimated object information; and (c) the learning device instructing a loss layer to generate a loss by using the estimated object information and GT object information corresponding thereto, and to perform backpropagation by using the loss, to thereby learn at least part of parameters in the CNN.
    Type: Application
    Filed: December 31, 2019
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho
  • Publication number: 20200247469
    Abstract: A method for delivering a steering intention of an autonomous driving module to a steering apparatus more accurately by using a reference map is provided. And the method includes steps of: (a) a computing device, if a subject intended steering signal inputted by the autonomous driving module at a current timing is acquired, instructing a signal adjustment module to select, by referring to the reference map, specific reference steering guide values corresponding to the subject intended steering signal; (b) the computing device (i) adjusting the subject intended steering signal by referring to the specific reference steering guide values, in order to generate a subject adjusted steering signal, and (ii) transmitting the subject adjusted steering signal to the steering apparatus, to thereby support the steering apparatus to rotate the subject vehicle by a specific steering angle corresponding to the subject intended steering signal.
    Type: Application
    Filed: January 10, 2020
    Publication date: August 6, 2020
    Inventors: Kye-Hyeon Kim, Yongjoong Kim, Hak-Kyoung Kim, Woonhyun Nam, SukHoon Boo, Myungchul Sung, Dongsoo Shin, Donghun Yeo, Wooju Ryu, Myeong-Chun Lee, Hyungsoo Lee, Taewoong Jang, Kyungjoong Jeong, Hongmo Je, Hojin Cho