Patents by Inventor László Domokos

László Domokos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8664146
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Patent number: 8574542
    Abstract: A new configuration of ZSM-5 is provided whereby the crystals have a higher average silica to alumina ratio at the edges of each crystallite than in the center as determined from a narrow slit line scan profile obtained from SEM/EDX or TEM/EDX elemental analysis. Such ZSM-5 crystals are obtained by a preparation process using L-tartaric acid. The new configuration ZSM-5 provides significantly reduced xylene losses in ethylbenzene dealkylation, especially when combined with silica as binder, and one or more hydrogenation metals selected from platinum, tin, lead, silver, copper, and nickel. Further advantages are found if used in combination with a small crystal size ZSM-5.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: November 5, 2013
    Assignee: Shell Oil Company
    Inventors: László Domokos, Ralph Haswell, Hong-Xin Li
  • Publication number: 20130288885
    Abstract: A hydrocarbon conversion catalyst composition which comprises ZSM-48 and/or EU-2 zeolite particles and refractory oxide binder essentially free of alumina in which the average aluminium concentration of the ZSM-48 and/or EU-2 zeolite particles is at least 1.3 times the aluminium concentration at the surface of the particles, processes for preparing such catalyst compositions and processes for converting hydrocarbon feedstock with the help of such compositions.
    Type: Application
    Filed: October 20, 2011
    Publication date: October 31, 2013
    Inventors: László Domokos, Laurent Georges Huve, Hermanus Jongkind, Aan Hendrik Klazinga, Marcello Stefano Rigutto
  • Publication number: 20130281757
    Abstract: A new configuration of ZSM-5 is provided whereby the crystals have a higher average silica to alumina ratio at the edges of each crystallite than in the centre as determined from a narrow slit line scan profile obtained from SEM/EDX or TEM/EDX elemental analysis. Such ZSM-5 crystals are obtained by a preparation process using L-tartaric acid. The new configuration ZSM-5 provides significantly reduced xylene losses in ethylbenzene dealkylation, especially when combined with silica as binder, and one or more hydrogenation metals selected from platinum, tin, lead, silver, copper, and nickel.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: Laszlo DOMOKOS, Ralph HASWELL, Hong-Xin LI
  • Publication number: 20130197290
    Abstract: Process for preparing a catalyst support which process comprises a) mixing pentasil zeolite having a bulk silica to alumina molar ratio in the range of from 20 to 150 with water, a silica source and an alkali metal salt, b) extruding the mixture obtained in step (a), c) drying and calcining the extrudates obtained in step (b), d) subjecting the calcined extrudates obtained in step (c) to ion exchange to reduce the alkali metal content, and e) drying the extrudates obtained in step (d); process for preparing a catalyst by furthermore impregnating such support with platinum in an amount in the range of from 0.001 to 0.1 wt % and tin in an amount in the range of from 0.01 to 0.5 wt %, each on the basis of total catalyst; ethylbenzene dealkylation catalyst obtainable thereby and a process for dealkylation of ethylbenzene which process comprises contacting feedstock containing ethylbenzene with such catalyst.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 1, 2013
    Inventors: László Domokos, Peter Geerinck, Aan Hendrik Klazinga
  • Publication number: 20120319322
    Abstract: A die is provided for extruding elongate particles suitable for use in catalysis. The die comprises a plurality of channels extending from an inlet to an outlet. From the inlet to the outlet each channel comprises a first section with a helical bore with a non-circular cross-section, and a second section with a cylindrical bore. The cylindrical bore of the second section which has a diameter equal or greater than that of the first section. The second section is at least twice as long as a diameter of the first section.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 20, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Rene Georges Ernst BARTHEL, Maria Johanna Wilhelmina VAN WIERINGEN, Leonardus Maria VAN DER SMAN, László DOMOKOS
  • Publication number: 20120322900
    Abstract: A process for performing a Fischer Tropsch reaction comprising (a) providing syngas to a reactor, said reactor comprising catalyst particles that have been produced by extruding a paste using a die comprising a plurality of channels extending from an inlet to an outlet, wherein from the inlet to the outlet each channel comprises a first section with a helical bore with a non-circular cross-section, and a second section with a cylindrical bore which has a diameter equal or greater than that of the first section, wherein the second section is at least twice as long as a diameter of the first section; (b) providing the following process conditions in the reactor: a temperature from 125 to 350° C., and a pressure from 5 to 150 bar absolute, and a gaseous hourly space velocity from 500 to 10000 Nl/l/h; and (c) removing Fischer Tropsch product from the reactor.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 20, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Rene Georges Ernst BARTHEL, Maria Johanna Wilhelmina VAN WIERINGEN, Leonardus Maria VAN DER SMAN, László DOMOKOS
  • Publication number: 20120279901
    Abstract: Disclosed is a process for the preparation of a faujasite zeolite. A starting zeolite of the faujasite structure having a silica to alumina ratio of from 4.5 to 6.5 and an alkali level of less than 1.5% wt is steam calcined to produce an intermediate zeolite. The intermediate zeolite is treated with an acidified solution having specificately defined characteristics.
    Type: Application
    Filed: November 30, 2010
    Publication date: November 8, 2012
    Inventors: László Domokos, Wiebe Sjoerd Kijlstra, Lay Hwa Ong, Edward Julius Creyghton
  • Publication number: 20120065056
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e ??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.
    Type: Application
    Filed: November 17, 2011
    Publication date: March 15, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Laszlo DOMOKOS, Hermanus JONGKIND, Johannes Anthonius Robert VAN VEEN
  • Publication number: 20120055846
    Abstract: Process of preparing a hydrocracking catalyst carrier comprising amorphous binder and zeolite Y, which process comprises subjecting zeolite Y having a silica to alumina molar ratio of at least 10 to calcination at a temperature of from 700 to 1000° C., hydrocracking catalyst carrier comprising amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10, the infrared spectrum of which catalyst has a peak at 3690 cm?1, substantially reduced peaks at 3630 cm?1 and 3565 cm?1 and no peak at 3600 cm?1, hydrocracking catalyst carrier comprising an amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10, which catalyst has an acidity as measured by exchange with perdeuterated benzene of at most 20 micro-mole/gram, hydrocracking catalyst derived from such carrier and hydrocracking process with the help of such catalyst.
    Type: Application
    Filed: April 15, 2010
    Publication date: March 8, 2012
    Inventors: László Domokos, Cornelis Ouwehand
  • Patent number: 8088706
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 3, 2012
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Publication number: 20110000822
    Abstract: The present invention relates to a process for starting up a hydrotreating process using a bulk metal catalyst, said process comprising the steps of: i) providing a hydrocarbon feed stream containing less than 100 ppmw nitrogen-containing species; ii) adding a nitrogen-containing compound to said hydrocarbon feed stream; and iii) contacting the resultant feed stream with the bulk metal catalyst in the presence of hydrogen and a sulfur-containing species. The present invention also relates to a process for hydrotreating a hydrocarbon feedstock, said process comprising the steps of: i) providing a hydrocarbon feed stream containing less than 100 ppmw nitrogen-containing species; ii) adding a nitrogen-containing compound to said hydrocarbon feed stream; iii) contacting the resultant feed stream with a bulk metal catalyst in the presence of hydrogen and a sulfur-containing species; and iv) subsequently contacting the resultant bulk metal catalyst with the hydrocarbon feedstock in the presence of hydrogen.
    Type: Application
    Filed: November 19, 2008
    Publication date: January 6, 2011
    Inventors: László Domokos, Hermanus Jongkind, Pieter Van Der Laan, Marcello Stefano Rigutto
  • Publication number: 20100278723
    Abstract: Process for preparing a modified zeolite Y which process comprises subjecting zeolite Y having a silica to alumina molar ratio of at least 10 to calcination at a temperature of from 700 to 1000° C. wherein (i) the steam partial pressure is at most 0.06 bar at a temperature of from 700 to 800° C., (ii) the steam partial pressure is at most 0.08 bar at a temperature of from 800 to 850° C. , (iii) the steam partial pressure is at least 0.03 bar at a temperature of from 850 to 900° C., and (iv) the steam partial pressure is at least 0.05 bar at a temperature of from 900 to 950° C. and (v) the steam partial pressure is at least 0.07 bar at a temperature of from 950 to 1000° C.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 4, 2010
    Inventors: David Allen Cooper, Cornelis Ouwehand, László Domokos, Lay Hwa Ong
  • Publication number: 20100249479
    Abstract: A catalyst composition which comprises: a) a carrier which comprises at least 30 wt % of a binder selected from silica, zirconia and titania; at least 20 wt % of a pentasil zeolite, having a bulk silica to alumina ratio in the range of from 20 to 150 and being in its H+ form; and less than 10 wt % of other components, all percentages being on the basis of total carrier; b) platinum in an amount in the range of from 0.001 to 0.1 wt %, on the basis of total catalyst; and c) tin in an amount in the range of from 0.01 to 0.5 wt %, on the basis of total catalyst; its preparation and use; are provided.
    Type: Application
    Filed: July 28, 2008
    Publication date: September 30, 2010
    Inventors: Johanna Jacoba Berg-Slot, László Domokos, Ingrid Maria Van Vegghel
  • Publication number: 20100217057
    Abstract: A new configuration of ZSM-5 is provided whereby the crystals have a higher average silica to alumina ratio at the edges of each crystallite than in the centre as determined from a narrow slit line scan profile obtained from SEM/EDX or TEM/EDX elemental analysis. Such ZSM-5 crystals are obtained by a preparation process using L-tartaric acid. The new configuration ZSM-5 provides significantly reduced xylene losses in ethylbenzene dealkylation, especially when combined with silica as binder, and one or more hydrogenation metals selected from platinum, tin, lead, silver, copper, and nickel. Further advantages are found if used in combination with a small crystal size ZSM-5.
    Type: Application
    Filed: September 10, 2008
    Publication date: August 26, 2010
    Inventors: László Domokos, Ralph Haswell, Hong-Xin Li
  • Patent number: 7749937
    Abstract: An unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, and a refractory oxide material which comprises 50 wt % or more titania, on oxide basis, which is prepared by precipitation techniques, finds use in the hydroprocessing of hydrocarbonaceous feedstocks.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 6, 2010
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Willem Hartman Jurriaan Stork, Johanna Maria Helena Van Den Tol-Kershof
  • Patent number: 7648939
    Abstract: The invention provides an unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, one or more zeolites, and, optionally, a refractory oxide material. A (co)precipitation preparation process is described and also use of the composition in hydrocracking.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: January 19, 2010
    Assignee: Shell Oil Company
    Inventors: László Domokos, Hermanus Jongkind, Marcello Stefano Rigutto, Willem Hartman Jurriaan Stork, Beatrijs Anna Stork-Blaisse, legal representative, Esther Hillegarda Carola Van De Voort
  • Publication number: 20090239743
    Abstract: An unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, and a refractory oxide material which comprises 50 wt % or more titania, on oxide basis, which is prepared by precipitation techniques, finds use in the hydroprocessing of hydrocarbonaceous feedstocks.
    Type: Application
    Filed: June 2, 2009
    Publication date: September 24, 2009
    Inventors: Laszlo DOMOKOS, Hermanus JONGKIND, Willem Hartman Jurriaan STORK, Johanna Maria Helena VANDENTOL-KERSHOF
  • Publication number: 20090209414
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.
    Type: Application
    Filed: April 29, 2009
    Publication date: August 20, 2009
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Rober Van Veen
  • Patent number: 7557062
    Abstract: An unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, and a refractory oxide material which comprises 50 wt % or more titania, on oxide basis, which is prepared by precipitation techniques, finds use in the hydroprocessing of hydrocarbonaceous feedstocks.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: July 7, 2009
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Willem Hartman Jurriaan Stork, Johanna Maria Helena Van den Tol-Kershof