Patents by Inventor Ladislav Tichy

Ladislav Tichy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8846423
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: September 30, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Patent number: 8748912
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: June 10, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Patent number: 8748921
    Abstract: A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: June 10, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Paul S. Martin, Gerd O. Mueller, Regina B. Mueller-Mach, Helena Ticha, Ladislav Tichy
  • Publication number: 20130293145
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, JR., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Publication number: 20120043564
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Application
    Filed: November 3, 2011
    Publication date: February 23, 2012
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: MICHAEL D. CAMRAS, WILLIAM R. IMLER, FRANKLIN J. WALL, JR., FRANK M. STERANKA, MICHAEL R. KRAMES, HELENA TICHA, LADISLAV TICHY, Robertus G. Alferink
  • Patent number: 8067254
    Abstract: A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The optical element may be bonded to the phosphor converted light emitting devices. The optical element may be a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: November 29, 2011
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Publication number: 20110062469
    Abstract: A light emitter includes a light-emitting device (LED) die and an optical element over the LED die. The optical element includes a lens, a window element, and a bond at an interface disposed between the lens and the window element. The window element may be a wavelength converting element or an optically flat plate. The window element may be directly bonded or fused to the lens, or the window element may be bonded by one or more intermediate bonding layers to the lens. The bond between the window element and the lens may have a refractive index similar to that of the window element, the lens, or both.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Michael D. CAMRAS, Nanze Patrick WANG, Hendrik J.B. JAGT, Helena TICHA, Ladislav TICHY
  • Publication number: 20100109568
    Abstract: A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The optical element may be bonded to the phosphor converted light emitting devices. The optical element may be a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.
    Type: Application
    Filed: January 12, 2010
    Publication date: May 6, 2010
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Michael D. CAMRAS, William R. IMLER, Franklin J. WALL, JR., Frank M. STERANKA, Michael R. KRAMES, Helena TICHA, Ladislav TICHY, Robertus G. Alferink
  • Publication number: 20090173960
    Abstract: A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.
    Type: Application
    Filed: March 13, 2009
    Publication date: July 9, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Paul S. MARTIN, Gerd O. MUELLER, Regina B. MUELLER-MACH, Helena TICHA, Ladislav TICHY
  • Patent number: 7553683
    Abstract: A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: June 30, 2009
    Assignee: Philips Lumiled Lighting Co., LLC
    Inventors: Paul S. Martin, Gerd O. Mueller, Regina B. Mueller-Mach, Helena Ticha, Ladislav Tichy
  • Patent number: 7419839
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: September 2, 2008
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Michael D. Camras, William R. Imler, Frank S. Wall, Jr, Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy
  • Publication number: 20080186702
    Abstract: A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The phosphor converted LEDs may also be combined in an array with color LEDs. The color LEDs may be controlled to vary their brightness such that light with an approximately continuous broad spectrum is produced. By controlling the brightness of the color LEDs, light can be produced with a fixed brightness over a large range of white points with a high color rendering quality.
    Type: Application
    Filed: April 7, 2008
    Publication date: August 7, 2008
    Applicant: Lumileds Lighting U.S., LLC
    Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
  • Publication number: 20080006840
    Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
    Type: Application
    Filed: September 24, 2007
    Publication date: January 10, 2008
    Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Michael Camras, Gerard Harbers, William Imler, Matthijs Keuper, Paul Martin, Douglas Pocius, Frank Steranka, Helena Ticha, Ladislav Tichy, R. West
  • Patent number: 7276737
    Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: October 2, 2007
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Michael D. Camras, Gerard Harbers, William R. Imler, Matthijs H. Keuper, Paul S. Martin, Douglas W. Pocius, Frank M. Steranka, Helena Ticha, Ladislav Tichy, R. Scott West
  • Publication number: 20060118805
    Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
    Type: Application
    Filed: January 9, 2006
    Publication date: June 8, 2006
    Inventors: Michael Camras, Gerard Harbers, William Imler, Matthijs Keuper, Paul Martin, Douglas Pocius, Frank Steranka, Helena Ticha, Ladislav Tichy, R. West
  • Publication number: 20060105478
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 18, 2006
    Applicant: Lumileds Lighting U.S., LLC
    Inventors: Michael Camras, William Imler, Franklin Wall, Frank Steranka, Michael Krames, Helena Ticha, Ladislav Tichy
  • Patent number: 7009213
    Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 7, 2006
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Michael D. Camras, Gerard Harbers, William R. Imler, Matthijs H. Keuper, Paul S. Martin, Douglas W. Pocius, Frank M. Steranka, Helena Ticha, Ladislav Tichy, R. Scott West
  • Publication number: 20050274967
    Abstract: A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.
    Type: Application
    Filed: June 9, 2004
    Publication date: December 15, 2005
    Applicant: Lumileds lighting U.S., LLC
    Inventors: Paul Martin, Gerd Mueller, Regina Mueller-Mach, Helena Ticha, Ladislav Tichy
  • Publication number: 20050023545
    Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 3, 2005
    Inventors: Michael Camras, Gerard Harbers, William Imler, Matthijs Keuper, Paul Martin, Douglas Pocius, Frank Steranka, Helena Ticha, Ladislav Tichy, R. West