Patents by Inventor Laksshman SUNDARAM

Laksshman SUNDARAM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11798650
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional neural network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: October 24, 2023
    Assignee: Illumina, Inc.
    Inventors: Laksshman Sundaram, Kai-How Farh, Hong Gao, Jeremy Francis McRae
  • Publication number: 20230207058
    Abstract: The technology disclosed relates to variant calling of sequenced reads of a sample of a target species against a reference genome of a pseudo-target species. Low-quality variants are identified as false positive variants that are present in the second set of variants but absent from the first set of variants.
    Type: Application
    Filed: September 23, 2022
    Publication date: June 29, 2023
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Hong GAO, Tobias HAMP, Joshua Goodwin Jon MCMASTER-SCHRAIBER, Laksshman SUNDARAM, Kai-How FARH
  • Publication number: 20230207057
    Abstract: The technology disclosed relates to determining feasibility of using a reference genome of a non-target species for variant calling a sample of a target species. In particular, the technology disclosed relates to mapping sequenced reads of a sample of a target species to a reference genome of a non-target species to detect a first set of variants in the sequenced reads of the sample of the target species, and mapping the sequenced reads of the sample of the target species to a reference genome of a pseudo-target species to detect a second set of variants in the sequenced reads of the sample of the target species.
    Type: Application
    Filed: September 23, 2022
    Publication date: June 29, 2023
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Hong GAO, Tobias HAMP, Joshua Goodwin Jon MCMASTER-SCHRAIBER, Laksshman SUNDARAM, Kai-How FARH
  • Publication number: 20230207051
    Abstract: A first reference genome is segmented into a plurality of bins and high-quality sequenced reads are mapped on a bin-by-bin basis to the plurality of bins in the first reference genome, and a second reference genome is segmented into a plurality of bins and high-quality sequenced reads are mapped on a bin-by-bin basis to the plurality of bins in the second reference genome. A best-mapped bin is identified in the second reference genome based on the greatest degree of match between the best-mapped bin in the second reference genome and a corresponding bin in the first reference genome.
    Type: Application
    Filed: September 23, 2022
    Publication date: June 29, 2023
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Hong GAO, Tobias HAMP, Joshua Goodwin Jon MCMASTER-SCHRAIBER, Laksshman SUNDARAM, Kai-How FARH
  • Publication number: 20220237457
    Abstract: The technology disclosed relates to constructing a computer-implemented method for variant classification. In particular, the method includes using a pathogenicity prediction neural network to process as input, (i) a reference protein sequence that has a first chain of amino acids with at least twenty amino acids, (ii) an alternative protein sequence aligned with the reference sequence, where the alternative protein sequence has a second chain of amino acids with at least twenty amino acids, and the first and second chains of amino acids differ by a variant amino acid caused by a nucleotide substitution, and (iii) a primate conservation profile generated using a primate cross-species multiple sequence alignment that aligns the reference protein sequence with other protein sequences from primate species. The method further includes based on the processing of the input by the neural network, generating as output a pathogenicity prediction for the nucleotide substitution.
    Type: Application
    Filed: April 6, 2022
    Publication date: July 28, 2022
    Applicant: Illumina, Inc.
    Inventors: Laksshman Sundaram, Kai-How Farh, Hong Gao, Samskruthi Reddy Padigepati, Jeremy Francis McRae
  • Patent number: 11386324
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional neural network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: July 12, 2022
    Assignee: Illumina, Inc.
    Inventors: Hong Gao, Kai-How Farh, Laksshman Sundaram, Jeremy Francis McRae
  • Patent number: 11315016
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional neural network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: April 26, 2022
    Assignee: Illumina, Inc.
    Inventors: Laksshman Sundaram, Kai-How Farh, Hong Gao, Samskruthi Reddy Padigepati, Jeremy Francis McRae
  • Publication number: 20200279157
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional neural network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Application
    Filed: January 27, 2020
    Publication date: September 3, 2020
    Applicant: Illumina, Inc.
    Inventors: Hong GAO, Kai-How FARH, Laksshman SUNDARAM, Jeremy Francis McRAE
  • Publication number: 20200065675
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional network network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 27, 2020
    Applicant: Illumina, Inc.
    Inventors: Laksshman Sundaram, Kai-How Farh, Hong Gao, Samskruthi Reddy Padigepati, Jeremy Francis McRae
  • Patent number: 10558915
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional neutral network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 11, 2020
    Assignee: Illumina, Inc.
    Inventors: Hong Gao, Kai-How Farh, Laksshman Sundaram, Jeremy Francis McRae
  • Patent number: 10423861
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional network network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: September 24, 2019
    Assignee: Illumina, Inc.
    Inventors: Hong Gao, Kai-How Farh, Laksshman Sundaram, Jeremy Francis McRae
  • Publication number: 20190266491
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional network network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Applicant: Illumina, Inc.
    Inventors: Hong GAO, Kai-How FARH, Laksshman SUNDARAM, Jeremy Francis McRAE
  • Publication number: 20190114511
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional network network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 18, 2019
    Applicant: Illumina, Inc.
    Inventors: Hong GAO, Kai-How FARH, Laksshman SUNDARAM, Jeremy Francis McRAE
  • Publication number: 20190114544
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional network network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 18, 2019
    Applicant: Illumina, Inc.
    Inventors: Laksshman SUNDARAM, Kai-How FARH, Hong GAO, Jeremy Francis McRAE