Patents by Inventor Lambert Devoe

Lambert Devoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110272081
    Abstract: A method of making a fuel cell device comprises forming a green stacked structure to provide an internal active section of intervening green layers of ceramic material separating anode layers from cathode layers and sacrificial layers of organic material adjacent each of the anode and cathode layers opposite the intervening green layers, and a non-active section of the green layers substantially surrounding the active section. The sacrificial layers are sized to provide internal gas passages in the active section for feeding gases to the internal anodes and cathodes, and the sacrificial layers are coupled to edges of the structure to couple each of the internal gas passages to an inlet and an outlet of the device. The green stacked structure is heated to bake out the organic material to form the passages and to sinter together the green layers in the active and non-active sections.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 8029937
    Abstract: The invention provides solid oxide fuel cell devices and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate substrate having a reaction zone for heating to an operating reaction temperature, and at least one cold zone that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. An electrolyte is disposed between anodes and cathodes in the reaction zone, and the anode and cathode each have an electrical pathway extending to an exterior surface in a cold zone for electrical connection at low temperature. In one embodiment, the device is a multi-layer anode-cathode structure, and in another embodiment, the device is an electrode-supported device. The system further includes the devices positioned with their reaction zones in a hot zone chamber and their cold zones extending outside the hot zone chamber.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: October 4, 2011
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 7981565
    Abstract: The invention provides a fuel cell including an elongate substrate the length of which is the greatest dimension such that the elongate substrate exhibits thermal expansion along a dominant axis that is coextensive with the length. A reaction zone is provided along a first portion of the length for heating to an operating reaction temperature, and at least one cold zone is provided along a second portion of the length that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. An electrolyte is disposed between an anode and a cathode in the reaction zone and the electrolyte is monolithic with an interior ceramic support structure of the elongate substrate. The anode and cathode each have an electrical pathway extending to an exterior surface of the at least one cold zone for electrical connection at low temperature.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: July 19, 2011
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20110117471
    Abstract: A fuel cell device is provided in which the gas input passages are separate from the exhaust gas passages to provide better flow of reactants through the pores of the electrodes. First and second porous electrodes are separated by an electrolyte layer that is monolithic with a solid ceramic support structure for the device. First and second input passages extend within the respective electrodes, within the electrolyte layer, and/or at the surfaces that form the interface between the respective electrodes and the electrolyte layer. First and second exhaust passages are spaced apart from the input passages, and extend within the respective electrodes and/or at a surface thereof opposite the interface surface with the electrolyte layer. Gases are adapted to flow through the respective input passages, then through the pores of the porous electrodes, and then through the respective exhaust passages.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 19, 2011
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 7883816
    Abstract: A fuel cell device includes an elongate substrate having a cold zone adjacent a first end and a reaction zone adjacent a second end configured to be heated to an operating reaction temperature while the cold zone is configured to be shielded from the heat source to remain at a low temperature below the operating reaction temperature. Fuel and air inlets positioned in the cold zone are coupled to respective elongate fuel and oxidizer passages that extend within an interior solid ceramic support structure through the reaction zone in parallel and opposing relation to respective outlets adjacent the second end. Electrodes positioned adjacent the passages in the reaction zone are each electrically coupled from the interior structure to respective exterior contact surfaces in the cold zone. A solid electrolyte monolithic with the ceramic support structure is positioned between electrodes, and electrical connections are made to the exterior contact surfaces.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: February 8, 2011
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 7842429
    Abstract: The invention provides a fuel cell device including an elongate substrate the length of which is the greatest dimension such that the elongate substrate exhibits thermal expansion along a dominant axis coextensive with the length. A reaction zone is provided along a first portion of the length for heating to an operating reaction temperature, and at least one cold zone is provided along a second portion of the length that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. A plurality of fuel passages and oxidizer passages extend within an interior solid ceramic support structure of the elongate substrate from the cold zone to the reaction zone, each fuel and oxidizer passage having an associated anode or cathode, respectively, in the reaction zone in opposing relation with an electrolyte disposed therebetween that is monolithic with the ceramic support structure.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: November 30, 2010
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 7838137
    Abstract: The invention provides a fuel cell device having first and second cold end regions with a reaction zone therebetween. Fuel and oxidizer inlets are positioned in the first and second cold end regions with respective fuel and oxidizer outlets positioned in either the reaction zone or the opposite cold end region, and respective elongate fuel and oxidizer passages are coupled between the respective inlets and outlets at least partially extending through the reaction zone within an interior solid ceramic support structure in parallel and opposing relation. Electrodes are positioned adjacent the fuel and oxidizer passages in the reaction zone within the interior solid ceramic support structure and are electrically coupled to exterior contact surfaces in at least one of the cold end regions to which electrical connections are made. An electrolyte between the electrodes is monolithic with the interior solid ceramic support structure.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: November 23, 2010
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20100104910
    Abstract: Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness with the length direction being the dominant direction of thermal expansion. A reaction zone having at least one active layer therein is spaced from the first end and includes first and second opposing electrodes, associated active first and second gas passages, and electrolyte. The active first gas passage includes sub-passages extending in the y direction and spaced apart in the x direction. An artery flow passage extends from the first end along the length and into the reaction zone and is fluidicly coupled to the sub-passages of the active first gas passage. The thickness of the artery flow passage is greater than the thickness of the sub-passages.
    Type: Application
    Filed: October 28, 2009
    Publication date: April 29, 2010
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 7685703
    Abstract: A monolithic or essentially monolithic single layer capacitor with high structural strength and capacitance, a printed circuit board having the capacitor mounted thereon, and a method of making. Sheets of green-state ceramic dielectric material and glass/metal composite material are laminated together, diced into individual chips, and fired to sinter the glass and the ceramic together. The composite material contains an amount of metal sufficient to render the composite conductive whereby the composite may be used for one or both electrodes and for mounting the capacitor to the printed circuit board. Vertically-oriented surface mountable capacitors and hybrid capacitors are provided.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: March 30, 2010
    Assignee: Presidio Components, Inc.
    Inventors: Alan Devoe, Lambert Devoe, Hung Trinh
  • Publication number: 20100053842
    Abstract: A capacitor device mountable on a plane of a substrate includes an electrically conductive bottom plate adapted to be mounted substantially parallel to, and in electrical contact at the plane of the substrate and a first multilayer capacitor having substantially parallel first and second electrode plates oriented substantially perpendicular to the bottom plate with the first electrode plates being electrically connected to the bottom plate. An electrically conductive top lead frame overlaps with, and is electrically isolated from, the bottom plate. The top lead frame electrically connected to the second electrode plates and adapted to be electrically connected at the plane of the substrate. The bottom lead frame may have a corrugated shape, where the corrugated shape provides compliance between the first multilayer capacitor and the substrate. A portion of the top lead frame may contact at least a portion of a side of the first multilayer capacitor.
    Type: Application
    Filed: November 11, 2009
    Publication date: March 4, 2010
    Inventors: Daniel Devoe, Alan Devoe, Lambert Devoe
  • Publication number: 20090324999
    Abstract: The present invention relates to fuel cell devices and fuel cell systems, methods of using fuel cell devices and systems, and methods of making fuel cell devices. According to certain embodiments, the fuel cell devices may include an elongate substrate, such as a rectangular or tubular substrate, the length of which is the greatest dimension such that the coefficient of thermal expansion has only one dominant axis that is coextensive with the length. In addition, or in accordance with other certain embodiments, a reaction zone is positioned along a first portion of the length for heating to an operating reaction temperature, and at least one cold zone is positioned along a second portion of the length for operating at a temperature below the operating reaction temperature. There are one or more fuel passages in the elongate substrate, each having an associate anode, and one or more oxidizer passages in the elongate substrate, each having an associate cathode.
    Type: Application
    Filed: May 8, 2008
    Publication date: December 31, 2009
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20090226781
    Abstract: Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness. A reaction zone positioned along a portion of the length is configured to be heated to an operating reaction temperature, and has at least one active layer therein comprising an electrolyte separating first and second opposing electrodes, and active first and second gas passages adjacent the respective first and second electrodes. At least one cold zone positioned from the first end along another portion of the length is configured to remain below the operating reaction temperature. An artery flow passage extends from the first end along the length through the cold zone and into the reaction zone and is fluidicly coupled to the active first gas passage, which extends from the artery flow passage toward at least one side. The thickness of the artery flow passage is greater than the thickness of the active first gas passage.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 10, 2009
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20090123810
    Abstract: Fuel cell devices and fuel cell systems, methods of using same, and methods of making same are provided. In certain embodiments, the fuel cell devices may include one or more active layers containing active cells that are connected electrically in parallel and/or series. In certain embodiments, the fuel cell devices include an elongate ceramic support structure the length of which is the greatest dimension such that the coefficient of thermal expansion has only one dominant axis coextensive with the length. In certain embodiments, a reaction zone is positioned along a first portion of the length for heating to a reaction temperature, and at least one cold zone is positioned along a second portion of the length for operating below the reaction temperature. There are one or more gas passages, each having an associated anode or cathode. In some embodiments, ceramic end tubes are permanently attached to the ceramic support structure to supply gases to the passages.
    Type: Application
    Filed: November 7, 2008
    Publication date: May 14, 2009
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 7444726
    Abstract: A monolithic or essentially monolithic single layer capacitor with high structural strength and capacitance, a printed circuit board having the capacitor mounted thereon, and a method of making. Sheets of green-state ceramic dielectric material and glass/metal composite material are laminated together, diced into individual chips, and fired to sinter the glass and the ceramic together. The composite material contains an amount of metal sufficient to render the composite conductive whereby the composite may be used for one or both electrodes and for mounting the capacitor to the printed circuit board. Vertically-oriented surface mountable capacitors and hybrid capacitors are provided.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 4, 2008
    Assignee: Presidio Components, Inc.
    Inventors: Alan Devoe, Lambert Devoe, Hung Trinh
  • Publication number: 20080171237
    Abstract: The invention provides tubular solid oxide fuel cell devices and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate tube having a reaction zone for heating to an operating reaction temperature, and at least one cold zone that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. An electrolyte is disposed between anodes and cathodes in the reaction zone, and the anode and cathode each have an electrical pathway extending to an exterior surface in a cold zone for electrical connection at low temperature. In one embodiment, the tubular device is a spiral rolled structure, and in another embodiment, the tubular device is a concentrically arranged device. The system further includes the devices positioned with their reaction zones in a hot zone chamber and their cold zones extending outside the hot zone chamber.
    Type: Application
    Filed: May 10, 2007
    Publication date: July 17, 2008
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 7307829
    Abstract: A monolithic capacitor structure includes opposed and overlapping plates within a dielectric body, which are arranged to form a lower frequency, higher value capacitor. Other conductive structure is located either inside the dielectric body or on an external surface thereof and is effective to form a higher frequency, lower value capacitor in parallel with the lower frequency, higher value capacitor. The resulting array of combined series and parallel capacitors integral with the dielectric body provides effective wideband performance in an integrated, cost-effective structure.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: December 11, 2007
    Inventors: Daniel Devoe, Alan Devoe, Lambert Devoe
  • Publication number: 20070264542
    Abstract: The invention provides solid oxide fuel cell devices and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate substrate having a reaction zone for heating to an operating reaction temperature, and at least one cold zone that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. An electrolyte is disposed between anodes and cathodes in the reaction zone, and the anode and cathode each have an electrical pathway extending to an exterior surface in a cold zone for electrical connection at low temperature. In one embodiment, the device is a multi-layer anode-cathode structure, and in another embodiment, the device is an electrode-supported device. The system further includes the devices positioned with their reaction zones in a hot zone chamber and their cold zones extending outside the hot zone chamber.
    Type: Application
    Filed: May 10, 2007
    Publication date: November 15, 2007
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20070111065
    Abstract: The invention provides a solid oxide fuel cell device and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate substrate having a first cold end region adjacent a first end, a second cold end region adjacent a second end, and a hot reaction zone between the first and second cold end regions, wherein the hot reaction zone is configured to be heated to an operating reaction temperature, and the first and second cold end regions are configured to remain at a low temperature below the operating reaction temperature. A fuel inlet is positioned in the first cold end region with a respective fuel outlet positioned in either the hot reaction zone or the second cold end region, and an elongate fuel passage is coupled therebetween at least partially extending through the hot reaction zone.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 17, 2007
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20070105012
    Abstract: A solid oxide fuel cell device that includes an elongate substrate having a first end and an opposing second end with a length therebetween, a cold zone along a first portion of the length adjacent the first end, and a hot reaction zone along a second portion of the length adjacent the second end. The hot reaction zone is configured to be heated to an operating reaction temperature, and the cold zone is configured to remain at a low temperature below the operating reaction temperature. A fuel inlet and air inlet are each positioned in the cold zone and coupled to respective elongate fuel and oxidizer passages that extend through the hot reaction zone within the elongate substrate in parallel and opposing relation to respective fuel and air outlets adjacent the first end.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 10, 2007
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20070105003
    Abstract: The invention provides a solid oxide fuel cell device and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate substrate the length of which is the greatest dimension such that the elongate substrate has a coefficient of thermal expansion having only one dominant axis that is coextensive with the length. A reaction zone is provided along a first portion of the length for heating to an operating reaction temperature, and at least one cold zone is provided along a second portion of the length that remains at a low temperature below the operating reaction temperature when the reaction zone is heated.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 10, 2007
    Inventors: Alan Devoe, Lambert Devoe