Patents by Inventor Lance de Groot

Lance de Groot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11796688
    Abstract: In an example embodiment, a GNSS receiver may calculate protection levels for velocity and course over ground computed at a GNSS receiver. Specifically, the GNSS receiver may obtain Doppler measurements and variance measurements based on satellite signals received from at least five GNSS satellites. The GNSS receiver may utilize a least squares method to calculate the velocity states (e.g., x-velocity state, y-velocity state, and z-velocity state) and the clock bias for the GNSS receiver. The GNSS receiver may calculate the slope for each Doppler measurement on each velocity state. The GNSS receiver may then select the maximum slope for each velocity state and scale up the maximum slopes by a non-centrality parameter to calculate the protection level for each velocity state in the ECEF frame. The GNSS receiver may convert the velocity protection levels to NEU velocity protection levels to then calculate a protection level for course over ground.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: October 24, 2023
    Assignee: NovAtel Inc.
    Inventors: Brandon Culling, Lance de Groot
  • Publication number: 20220043167
    Abstract: In an example embodiment, a GNSS receiver may calculate protection levels for velocity and course over ground computed at a GNSS receiver. Specifically, the GNSS receiver may obtain Doppler measurements and variance measurements based on satellite signals received from at least five GNSS satellites. The GNSS receiver may utilize a least squares method to calculate the velocity states (e.g., x-velocity state, y-velocity state, and z-velocity state) and the clock bias for the GNSS receiver. The GNSS receiver may calculate the slope for each Doppler measurement on each velocity state. The GNSS receiver may then select the maximum slope for each velocity state and scale up the maximum slopes by a non-centrality parameter to calculate the protection level for each velocity state in the ECEF frame. The GNSS receiver may convert the velocity protection levels to NEU velocity protection levels to then calculate a protection level for course over ground.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Inventors: Brandon Culling, Lance de Groot
  • Patent number: 11226418
    Abstract: In an example embodiment, a GNSS receiver may calculate protection levels for velocity and course over ground computed at a GNSS receiver. Specifically, the GNSS receiver may obtain Doppler measurements and variance measurements based on satellite signals received from at least five GNSS satellites. The GNSS receiver may utilize a least squares method to calculate the velocity states (e.g., x-velocity state, y-velocity state, and z-velocity state) and the clock bias for the GNSS receiver. The GNSS receiver may calculate the slope for each Doppler measurement on each velocity state. The GNSS receiver may then select the maximum slope for each velocity state and scale up the maximum slopes by a non-centrality parameter to calculate the protection level for each velocity state in the ECEF frame. The GNSS receiver may convert the velocity protection levels to NEU velocity protection levels to then calculate a protection level for course over ground.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: January 18, 2022
    Assignee: NovAtel Inc.
    Inventors: Brandon Culling, Lance de Groot
  • Publication number: 20200400841
    Abstract: In an example embodiment, a GNSS receiver may calculate protection levels for velocity and course over ground computed at a GNSS receiver. Specifically, the GNSS receiver may obtain Doppler measurements and variance measurements based on satellite signals received from at least five GNSS satellites. The GNSS receiver may utilize a least squares method to calculate the velocity states (e.g., x-velocity state, y-velocity state, and z-velocity state) and the clock bias for the GNSS receiver. The GNSS receiver may calculate the slope for each Doppler measurement on each velocity state. The GNSS receiver may then select the maximum slope for each velocity state and scale up the maximum slopes by a non-centrality parameter to calculate the protection level for each velocity state in the ECEF frame. The GNSS receiver may convert the velocity protection levels to NEU velocity protection levels to then calculate a protection level for course over ground.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Inventors: Brandon Culling, Lance de Groot
  • Patent number: 10670729
    Abstract: A system and method provides an Automotive Safety Integrity Level (ASIL) qualifier for Global Navigation Satellite System (GNSS) position and related values. Specifically, hardware platform diagnostics are executed on one or more platforms associated with a GNSS Position Sensor (GNSSPS) that calculates/obtains position and/or related values. Also, a Receiver Autonomous Integrity Monitoring (RAIM) algorithm is executed on the calculated/obtained position and/or related values. If the results both produce a “good” qualifier, the position and/or related values is assigned an ASIL qualifier of “good” and may be utilized by an ASIL rated system. If either of the qualifiers is a “bad” qualifier, the position and/or related values is assigned an ASIL qualifier of “bad” and cannot be utilized by the ASIL rated system. In addition, the inventive system and method may compute a probability associated with an integrity violation of the RAIM algorithm which may consider the probability of hardware failure.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 2, 2020
    Assignee: NovAtel Inc.
    Inventors: Lance de Groot, Zoltan Molnar
  • Publication number: 20190056510
    Abstract: A system and method provides an Automotive Safety Integrity Level (ASIL) qualifier for Global Navigation Satellite System (GNSS) position and related values. Specifically, hardware platform diagnostics are executed on one or more platforms associated with a GNSS Position Sensor (GNSSPS) that calculates/obtains position and/or related values. Also, a Receiver Autonomous Integrity Monitoring (RAIM) algorithm is executed on the calculated/obtained position and/or related values. If the results both produce a “good” qualifier, the position and/or related values is assigned an ASIL qualifier of “good” and may be utilized by an ASIL rated system. If either of the qualifiers is a “bad” qualifier, the position and/or related values is assigned an ASIL qualifier of “bad” and cannot be utilized by the ASIL rated system. In addition, the inventive system and method may compute a probability associated with an integrity violation of the RAIM algorithm which may consider the probability of hardware failure.
    Type: Application
    Filed: August 18, 2017
    Publication date: February 21, 2019
    Inventors: Lance de Groot, Zoltan Molnar