Patents by Inventor Lance L. Smith

Lance L. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220290609
    Abstract: An assembly is provided for a turbine engine with a flowpath. This assembly includes a fuel source and an engine component. The engine component forms a peripheral boundary of the flowpath. The engine component includes a component internal passage. The engine component is configured to receive fuel from the fuel source. The engine component is configured to crack at least some of the fuel within the component internal passage thereby cooling the engine component and providing at least partially cracked fuel. The assembly is configured to direct the at least partially cracked fuel into the flowpath for combustion.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 15, 2022
    Inventors: Dustin W. Davis, Lance L. Smith, Won-Wook Kim
  • Publication number: 20220162989
    Abstract: A gas turbine engine includes a cracking device that is configured to decompose a portion of an ammonia flow into a flow of component parts of the ammonia flow, a thermal transfer device that is configured to heat the ammonia flow to a temperature above 500° C. (932° F.), a combustor that is configured to receive and combust the flow of component parts of the ammonia flow to generate a high energy gas flow, a compressor section that is configured to supply compressed air to the combustor, and a turbine section in flow communication with the high energy gas flow produced by the combustor and mechanically coupled to drive the compressor section.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 26, 2022
    Inventors: Peter Cocks, Lance L. Smith
  • Publication number: 20220162999
    Abstract: A gas turbine engine includes a cracking device that is configured to decompose an ammonia flow into a flow that contains more hydrogen (H2) than ammonia (NH3), a first separation device that separates hydrogen downstream of the cracking device, wherein residual ammonia and nitrogen are exhausted as a residual flow. The separated flow contains more hydrogen than ammonia, and nitrogen is exhausted separately as a hydrogen flow. A combustor is configured to receive and combust the hydrogen flow from the separation device to generate a gas flow. A compressor section is configured to supply compressed air to the combustor. A turbine section is in flow communication with the gas flow produced by the combustor and is mechanically coupled to drive the compressor section.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 26, 2022
    Inventors: Peter Cocks, Lance L. Smith
  • Patent number: 11254439
    Abstract: Fuel tank inerting systems for aircraft are provided. The systems include a fuel tank, a catalytic reactor arranged to receive a first reactant from a first reactant source and a second reactant from a second reactant source to generate an inert gas that is supplied to the fuel tank to fill an ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out the inert gas, and a controller configured to perform a light-off operation of the catalytic reactor by controlling at least one light-off parameter and, after light-off occurs, adjusting the at least one light-off parameter to an operating level, wherein the at least one light-off parameter comprises a temperature of the catalytic reactor.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: February 22, 2022
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Sean C. Emerson, Peter A T Cocks, Lance L. Smith, Eric Surawski
  • Publication number: 20210372622
    Abstract: A main mixer including a swirler along an axis, the swirler including an outer swirler with a multiple of outer vanes, and a center swirler with a multiple of center vanes and a swirler hub along the axis, the swirler hub including a fuel manifold and an inner swirler with a multiple of inner vanes that support a centerbody, the multiple of inner vanes interconnect the fuel manifold and the centerbody.
    Type: Application
    Filed: July 8, 2021
    Publication date: December 2, 2021
    Applicant: Raytheon Technologies Corporation
    Inventors: Zhongtao Dai, Lance L. Smith, Jeffrey M. Cohen
  • Publication number: 20210362870
    Abstract: Fuel tank inerting systems for aircraft are provided. The systems include a fuel tank, a catalytic reactor arranged to receive a first reactant from a first reactant source and a second reactant from a second reactant source to generate an inert gas that is supplied to the fuel tank to fill an ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out the inert gas, and a controller configured to perform a light-off operation of the catalytic reactor by controlling at least one light-off parameter and, after light-off occurs, adjusting the at least one light-off parameter to an operating level, wherein the at least one light-off parameter comprises a temperature of the catalytic reactor.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 25, 2021
    Inventors: Sean C. Emerson, Peter AT Cocks, Lance L. Smith, Eric Surawski
  • Publication number: 20210348560
    Abstract: A combustor assembly for a gas turbine engine according to an example of the present disclosure includes, among other things, a combustion chamber, and a fuel injector assembly in communication with the combustion chamber that has a swirler body situated about a nozzle to define an injector passage that converges to a throat. The throat is defined at a distance from the combustion chamber. The nozzle includes a primary fuel injector and an array of secondary plain jet fuel injectors.
    Type: Application
    Filed: March 2, 2021
    Publication date: November 11, 2021
    Inventors: Zhongtao Dai, Lance L. Smith, Jeffrey M. Cohen
  • Publication number: 20210332759
    Abstract: An energy extraction system according to an exemplary embodiment of this disclosure, among other possible things includes an ammonia fuel storage tank assembly that is configured to store a liquid ammonia fuel, a thermal transfer assembly that is configured to transform the liquid ammonia fuel into a vaporized ammonia based fuel, a turbo-expander that is configured to expand the vaporized ammonia based fuel to extract work, and an energy conversion device that is configured to use the vaporized ammonia based fuel from the turbo-expander to generate a work output.
    Type: Application
    Filed: April 27, 2020
    Publication date: October 28, 2021
    Inventors: Lance L. Smith, Peter Cocks, Joseph B. Staubach
  • Patent number: 11148823
    Abstract: Fuel tank inerting systems and methods for aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, and an inert gas recycling system located downstream of the catalytic reactor and upstream of the fuel tank, wherein the inert gas recycling system is arranged to direct a portion of the inert gas to the catalytic reactor.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 19, 2021
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Lance L. Smith, Eric Surawski
  • Patent number: 11149952
    Abstract: A main mixer including a swirler along an axis, the swirler including an outer swirler with a multiple of outer vanes, and a center swirler with a multiple of center vanes and a swirler hub along the axis, the swirler hub including a fuel manifold and an inner swirler with a multiple of inner vanes that support a centerbody, the multiple of inner vanes interconnect the fuel manifold and the centerbody.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: October 19, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Zhongtao Dai, Lance L. Smith, Jeffrey M. Cohen
  • Patent number: 11130590
    Abstract: Fuel tank inerting systems for aircraft are provided. The systems include a fuel tank, a catalytic reactor arranged to receive a first reactant from a first reactant source and a second reactant from a second reactant source to generate an inert gas that is supplied to the fuel tank to fill an ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out the inert gas, and a controller configured to perform a light-off operation of the catalytic reactor by controlling at least one light-off parameter and, after light-off occurs, adjusting the at least one light-off parameter to an operating level, wherein the at least one light-off parameter comprises a space velocity through the catalytic reactor.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: September 28, 2021
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Sean C. Emerson, Peter A T Cocks, Lance L. Smith, Eric Surawski
  • Patent number: 10994860
    Abstract: A fuel tank inerting system is disclosed. In addition to a fuel tank, the system includes a catalytic reactor with an inlet, an outlet, a reactive flow path between the inlet and the outlet, and a catalyst on the reactive flow path. The catalytic reactor is arranged to receive fuel from the fuel tank and air from an air source, and to react the fuel and air along the reactive flow path to generate an inert gas. The system also includes an inert gas flow path from the catalytic reactor to the fuel tank. The system also includes a non-uniform catalyst composition along the reactive flow path.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: May 4, 2021
    Assignee: HAMILTON SUNSTRAND CORPORATION
    Inventors: Sean C. Emerson, Barbara Brenda Botros, Zissis A. Dardas, Lance L. Smith, Eric Surawski, Catherine Thibaud
  • Patent number: 10954859
    Abstract: A combustor assembly for a gas turbine engine according to an example of the present disclosure includes, among other things, a combustion chamber, and a fuel injector assembly in communication with the combustion chamber that has a swirler body situated about a nozzle to define an injector passage that converges to a throat. The throat is defined at a distance from the combustion chamber. The nozzle includes a primary fuel injector along a first fuel injector axis and at least one secondary plain jet fuel injector axially forward of the primary fuel injector.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: March 23, 2021
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Zhongtao Dai, Lance L. Smith, Jeffrey M. Cohen
  • Patent number: 10850861
    Abstract: Fuel tank inerting systems for aircraft are provided. The systems include a fuel tank, a catalytic reactor arranged to receive a first reactant from a first reactant source and a second reactant from a second reactant source to generate an inert gas that is supplied to the fuel tank to fill an ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out the inert gas, and a controller configured to perform a light-off operation of the catalytic reactor by controlling at least one light-off parameter and, after light-off occurs, adjusting the at least one light-off parameter to an operating level, wherein the at least one light-off parameter comprises a space velocity through the catalytic reactor.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 1, 2020
    Assignee: HAMILTON SUNSTRAND CORPORATION
    Inventors: Sean C. Emerson, Peter A T Cocks, Lance L. Smith, Eric Surawski
  • Publication number: 20200346780
    Abstract: Fuel tank inerting systems for aircraft are provided. The systems include a fuel tank, a catalytic reactor arranged to receive a first reactant from a first reactant source and a second reactant from a second reactant source to generate an inert gas that is supplied to the fuel tank to fill an ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out the inert gas, and a controller configured to perform a light-off operation of the catalytic reactor by controlling at least one light-off parameter and, after light-off occurs, adjusting the at least one light-off parameter to an operating level, wherein the at least one light-off parameter comprises a space velocity through the catalytic reactor.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Sean C. Emerson, Peter AT Cocks, Lance L. Smith, Eric Surawski
  • Patent number: 10801728
    Abstract: A main mixer including a swirler along an axis, the swirler including an outer swirler with a multiple of outer vanes, and a center swirler with a multiple of center vanes and a swirler hub along the axis, the swirler hub including a fuel manifold and an inner swirler with a multiple of inner vanes that support a centerbody, the multiple of inner vanes interconnect the fuel manifold and the centerbody.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: October 13, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Zhongtao Dai, Lance L. Smith, Jeffrey M. Cohen
  • Publication number: 20200239153
    Abstract: Fuel tank inerting systems and methods for aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, and an inert gas recycling system located downstream of the catalytic reactor and upstream of the fuel tank, wherein the inert gas recycling system is arranged to direct a portion of the inert gas to the catalytic reactor.
    Type: Application
    Filed: March 25, 2020
    Publication date: July 30, 2020
    Inventors: Lance L. Smith, Eric Surawski
  • Patent number: 10718524
    Abstract: A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: July 21, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Zhongtao Dai, Jeffrey M. Cohen, Catalin G. Fotache, Lance L. Smith, Donald J. Hautman
  • Publication number: 20200189761
    Abstract: A fuel tank inerting system is disclosed. In addition to a fuel tank, the system includes a catalytic reactor with an inlet, an outlet, a reactive flow path between the inlet and the outlet, and a catalyst on the reactive flow path. The catalytic reactor is arranged to receive fuel from the fuel tank and air from an air source, and to react the fuel and air along the reactive flow path to generate an inert gas. The system also includes an inert gas flow path from the catalytic reactor to the fuel tank. The system also includes a non-uniform catalyst composition along the reactive flow path.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Inventors: Sean C. Emerson, Barbara Brenda Botros, Zissis A. Dardas, Lance L. Smith, Eric Surawski, Catherine Thibaud
  • Publication number: 20200180776
    Abstract: Fuel tank inerting systems for aircraft are provided. The systems include a fuel tank, a catalytic reactor arranged to receive a first reactant from a first reactant source and a second reactant from a second reactant source to generate an inert gas that is supplied to the fuel tank to fill an ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out the inert gas, and a controller configured to perform a light-off operation of the catalytic reactor by controlling at least one light-off parameter and, after light-off occurs, adjusting the at least one light-off parameter to an operating level, wherein the at least one light-off parameter comprises a space velocity through the catalytic reactor.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 11, 2020
    Inventors: Sean C. Emerson, Peter AT Cocks, Lance L. Smith, Eric Surawski