Patents by Inventor Lance M. Baird

Lance M. Baird has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11015069
    Abstract: A surface treatment formulation configured to inhibit scaling or climbing of a surface is provided. The surface treatment formulation may include a base binding material configured to adhere to the surface and a filler material embedded in the base binding material. The filler material may include a dry lubricant having a layered lamellar structure or low inter filler interaction. Furthermore, the surface treatment formulation may be configured to be activated in order to expose the filler material thereby causing formation of a slippery surface to inhibit the scaling or climbing of the surface.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: May 25, 2021
    Assignee: The Johns Hopkins University
    Inventors: Zhiyong Xia, Adam J. Maisano, Lance M. Baird, Adam W. Freeman, Sara E. Kubik, Dawnielle Farrar-Gaines
  • Publication number: 20190352517
    Abstract: A surface treatment formulation configured to inhibit scaling or climbing of a surface is provided. The surface treatment formulation may include a base binding material configured to adhere to the surface and a filler material embedded in the base binding material. The filler material may include a dry lubricant having a layered lamellar structure or low inter filler interaction. Furthermore, the surface treatment formulation may be configured to be activated in order to expose the filler material thereby causing formation of a slippery surface to inhibit the scaling or climbing of the surface.
    Type: Application
    Filed: January 7, 2019
    Publication date: November 21, 2019
    Inventors: Zhiyong Xia, Adam J. Maisano, Lance M. Baird, Adam W. Freeman, Sara E. Kubik
  • Patent number: 10381635
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: August 13, 2019
    Assignee: The Johns Hopkins University
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Publication number: 20190201578
    Abstract: A biomaterial implant may include a collagen membrane. The biomaterial implant may further include a plurality of nanoparticles embedded in the collagen membrane. Furthermore, at least one nanoparticle of the plurality of nanoparticles may include a polymer shell and a bio-active therapeutic agent encapsulated by the polymer shell.
    Type: Application
    Filed: October 26, 2018
    Publication date: July 4, 2019
    Inventors: Morgana M. Trexler, Xiomara Calderon-Colon, Leslie H. Hamilton, Min Zhao, Brian Reid, Julia B. Patrone, Lance M. Baird
  • Publication number: 20190183807
    Abstract: A therapeutic agent release system may be provided. The therapeutic agent release system may include a plurality of polymer shells having a diameter of about 50-200 nanometers. The therapeutic agent release system may further include a bio-active therapeutic agent encapsulated by each of the polymer shells and being configured to heal an injury and increase a wound electric signal of the injury thereby increasing a healing rate of the injury. Each of the polymer shells may have a degradation profile configured to control a release of the bio-active therapeutic agent through the polymer shell to the injury over a predetermined period of time.
    Type: Application
    Filed: October 19, 2018
    Publication date: June 20, 2019
    Inventors: Lance M. Baird, Xiomara Calderon-Colon, Morgana M. Trexler, Leslie H. Hamilton
  • Publication number: 20170271647
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Patent number: 9705124
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 11, 2017
    Assignee: The Johns Hopkins University
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Patent number: 9281537
    Abstract: A thin film electrode is fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 8, 2016
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Publication number: 20130312255
    Abstract: A thin film electrode is fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 28, 2013
    Applicant: Johns Hopkins Univesity
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Patent number: 8574767
    Abstract: Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: November 5, 2013
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Publication number: 20130220817
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 29, 2013
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Publication number: 20110123852
    Abstract: Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Application
    Filed: May 18, 2010
    Publication date: May 26, 2011
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Publication number: 20100209516
    Abstract: A drug delivery system, product and method which effectuates delivery of appropriate amounts of a pharmaceutically active agent only upon stimulus of a physiological agent released during a disease event are described. A polymer that can bind to a specific biological stimulus and respond with a specific response is included. The response may be release of a pharmaceutical agent, an optical signal or a change in physical properties of the polymer. The design of associative polymers that are held together using temporary bonds which will dissolve, break apart or swell in the presence of the specific stimulus are described. One embodiment includes a reversible response to a biological stimulus.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 19, 2010
    Inventors: Jason J. Benkoski, Andrew F. Mason, Lance M. Baird, Jennifer L. Sample