Patents by Inventor Lance W. Barron

Lance W. Barron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9864188
    Abstract: A method of forming a micro-electromechanical systems (MEMS) pixel, such as a DMD type pixel, by forming a substrate having a non-planar upper surface, and depositing a photoresist spacer layer upon the substrate. The spacer layer is exposed to a grey-scale lithographic mask to shape an upper surface of the spacer layer. A control member is formed upon the planarized spacer layer, and an image member is formed over the control member. The image member is configured to be positioned as a function of the control member to form a spatial light modulator (SLM). The spacer layer is planarized by masking a selected portion of the spacer layer with a grey-scale lithographic mask to remove binge in the selected portion.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: January 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Patrick I. Oden, James C. Baker, Sandra Zheng, William C. McDonald, Lance W. Barron
  • Patent number: 9709802
    Abstract: In described examples, a DMD includes an array of micromirror pixels. Each pixel includes a right electrode on a first side of the pixel, a left electrode on a second side of the pixel adjacent the first side, and a cantilevered beam supporting a mirror. The cantilever beam tilts on two axes of translation: pitch and roll. The mirror has: a first landed position (on a first and second spring tip) over the right electrode; and a second landed position (on the first and a third spring tip) over the left electrode, such that the first landed position and the second landed positions are 90° apart. In transitioning from the first landed position to the second landed position, the mirror maintains contact with the first spring tip while rolling from the second spring tip to the third spring tip.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: July 18, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: William C. McDonald, James N. Hall, Mark F. Reed, Lance W. Barron, Terry A. Bartlett, Divyanshu Agrawal
  • Patent number: 9448484
    Abstract: A method of forming a micro-electromechanical systems (MEMS) pixel, such as a DMD-type pixel, by depositing a photoresist spacer layer upon a substrate. The photoresist spacer layer is exposed to a grey-scale lithographic mask to shape an upper surface of the photoresist spacer layer. A control member is formed upon the shaped spacer layer, and has a sloped portion configured to maximize energy density. An image member is configured to be positioned as a function of the control member to form a spatial light modulator (SLM).
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: September 20, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Patrick I. Oden, James C. Baker, Sandra Zheng, William C. McDonald, Lance W. Barron
  • Publication number: 20160266377
    Abstract: In described examples, a DMD includes an array of micromirror pixels. Each pixel includes a right electrode on a first side of the pixel, a left electrode on a second side of the pixel adjacent the first side, and a cantilevered beam supporting a mirror. The cantilever beam tilts on two axes of translation: pitch and roll. The mirror has: a first landed position (on a first and second spring tip) over the right electrode; and a second landed position (on the first and a third spring tip) over the left electrode, such that the first landed position and the second landed positions are 90° apart. In transitioning from the first landed position to the second landed position, the mirror maintains contact with the first spring tip while rolling from the second spring tip to the third spring tip.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Inventors: William C. McDonald, James N. Hall, Mark F. Reed, Lance W. Barron, Terry A. Bartlett, Divyanshu Agrawal
  • Patent number: 9348136
    Abstract: A DMD having an array of micromirror pixels wherein each pixel comprises a right electrode on a first side of the pixel, a left electrode on a second side of the pixel adjacent the first side and a cantilevered beam supporting a mirror. The cantilever beam tilts on two axes of translation: pitch and roll. The mirror has a first landed position (on a first and second spring tip) over the right electrode and a second landed position (on the first and a third spring tip) over the left electrode such that the first landed position and the second landed positions are 90° apart. In transitioning from the first landed position to the second landed position, the mirror maintains contact with the first spring tip while rolling from the second spring tip to the third spring tip.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: May 24, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: William C. McDonald, James N. Hall, Mark F. Reed, Lance W. Barron, Terry A. Bartlett, Divyanshu Agrawal
  • Publication number: 20160124311
    Abstract: A method of forming a micro-electromechanical systems (MEMS) pixel, such as a DMD-type pixel, by depositing a photoresist spacer layer upon a substrate. The photoresist spacer layer is exposed to a grey-scale lithographic mask to shape an upper surface of the photoresist spacer layer. A control member is formed upon the shaped spacer layer, and has a sloped portion configured to maximize energy density. An image member is configured to be positioned as a function of the control member to form a spatial light modulator (SLM).
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Inventors: Patrick I. Oden, James C. Baker, Sandra Zheng, William C. McDonald, Lance W. Barron
  • Publication number: 20160124302
    Abstract: A method of forming a micro-electromechanical systems (MEMS) pixel, such as a DMD type pixel, by forming a substrate having a non-planar upper surface, and depositing a photoresist spacer layer upon the substrate. The spacer layer is exposed to a grey-scale lithographic mask to shape an upper surface of the spacer layer. A control member is formed upon the planarized spacer layer, and an image member is formed over the control member. The image member is configured to be positioned as a function of the control member to form a spatial light modulator (SLM). The spacer layer is planarized by masking a selected portion of the spacer layer with a grey-scale lithographic mask to remove binge in the selected portion.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 5, 2016
    Inventors: Patrick I. Oden, James C. Baker, Sandra Zheng, William C. McDonald, Lance W. Barron
  • Patent number: 9140898
    Abstract: A hermetic package comprising a substrate (110) having a surface with a MEMS structure (101) of a first height (102), the substrate hermetically sealed to a cap (120) forming a cavity over the MEMS structure; the cap attached to the substrate surface by a vertical stack (130) of metal layers adhering to the substrate surface and to the cap, the stack having a continuous outline surrounding the MEMS structure while spaced from the MEMS structure by a distance (140); the stack having a bottom metal seed film (131) adhering to the substrate with a first width (131a), and further a top metal seed film (132) adhering to the cap with a second width (132a) smaller than the first width, the top metal seed film tied to a layer (135) including gold-indium intermetallic compounds, layer (135) having a height greater than the first height.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 22, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: John C. Ehmke, Virgil C. Ararao, Toby R. Linder, Lance W. Barron
  • Publication number: 20150070749
    Abstract: A DMD having an array of micromirror pixels wherein each pixel comprises a right electrode on a first side of the pixel, a left electrode on a second side of the pixel adjacent the first side and a cantilevered beam supporting a mirror. The cantilever beam tilts on two axes of translation: pitch and roll. The mirror has a first landed position (on a first and second spring tip) over the right electrode and a second landed position (on the first and a third spring tip) over the left electrode such that the first landed position and the second landed positions are 90° apart. In transitioning from the first landed position to the second landed position, the mirror maintains contact with the first spring tip while rolling from the second spring tip to the third spring tip.
    Type: Application
    Filed: May 13, 2014
    Publication date: March 12, 2015
    Inventors: William C. McDonald, James N. Hall, Mark F. Reed, Lance W. Barron, Terry A. Bartlett, Divyanshu Agrawal
  • Patent number: 8975722
    Abstract: A MEMS logic device comprising agate which pivots on a torsion hinge, two conductive channels on the gate, one on each side of the torsion hinge, source and drain landing pads under the channels, and two body bias elements under the gate, one on each side of the torsion hinge, so that applying a threshold bias between one body bias element and the gate will pivot the gate so that one channel connects the respective source and drain landing pad, and vice versa. An integrated circuit with MEMS logic devices on the dielectric layer, with the source and drain landing pads connected to metal interconnects of the integrated circuit. A process of forming the MEM switch.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 10, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: James N. Hall, Lance W. Barron, Cuiling Gong
  • Publication number: 20140268295
    Abstract: A hermetic package comprising a substrate (110) having a surface with a MEMS structure (101) of a first height (102), the substrate hermetically sealed to a cap (120) forming a cavity over the MEMS structure; the cap attached to the substrate surface by a vertical stack (130) of metal layers adhering to the substrate surface and to the cap, the stack having a continuous outline surrounding the MEMS structure while spaced from the MEMS structure by a distance (140); the stack having a bottom metal seed film (131) adhering to the substrate with a first width (131a), and further a top metal seed film (132) adhering to the cap with a second width (132a) smaller than the first width, the top metal seed film tied to a layer (135) including gold-indium intermetallic compounds, layer (135) having a height greater than the first height.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: John C. Ehmke, Virgil C. Ararao, Toby R. Linder, Lance W. Barron
  • Publication number: 20140252419
    Abstract: A MEMS logic device comprising agate which pivots on a torsion hinge, two conductive channels on the gate, one on each side of the torsion hinge, source and drain landing pads under the channels, and two body bias elements under the gate, one on each side of the torsion hinge, so that applying a threshold bias between one body bias element and the gate will pivot the gate so that one channel connects the respective source and drain landing pad, and vice versa. An integrated circuit with MEMS logic devices on the dielectric layer, with the source and drain landing pads connected to metal interconnects of the integrated circuit. A process of forming the MEM switch.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James N. Hall, Lance W. Barron, Cuiling Gong
  • Patent number: 8729657
    Abstract: A MEMS logic device comprising agate which pivots on a torsion hinge, two conductive channels on the gate, one on each side of the torsion hinge, source and drain landing pads under the channels, and two body bias elements under the gate, one on each side of the torsion hinge, so that applying a threshold bias between one body bias element and the gate will pivot the gate so that one channel connects the respective source and drain landing pad, and vice versa. An integrated circuit with MEMS logic devices on the dielectric layer, with the source and drain landing pads connected to metal interconnects of the integrated circuit. A process of forming the MEM switch.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: May 20, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: James N. Hall, Lance W. Barron, Cuiling Gong
  • Patent number: 8617960
    Abstract: A capacitive microphone transducer integrated into an integrated circuit includes a fixed plate and a membrane formed in or above an interconnect region of the integrated circuit. A process of forming an integrated circuit containing a capacitive microphone transducer includes etching access trenches through the fixed plate to a region defined for the back cavity, filling the access trenches with a sacrificial material, and removing a portion of the sacrificial material from a back side of the integrated circuit.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 31, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Brian E. Goodlin, Wei-Yan Shih, Lance W. Barron
  • Publication number: 20130286463
    Abstract: A method of actuating micromirror elements of a digital micromirror device is disclosed. A logic state is stored in the micromirror element including applying a negative voltage more negative than about ?5 volts to the micromirror element, applying a positive voltage less than about 5 volts to a first electrode, and applying ground to a second electrode. A first logic state is switched to a second logic state with an inverted waveform, including applying ground to the first electrode, applying a positive voltage less than 5 volts to the second electrode, applying a negative BSA voltage to the first electrode, applying a positive reset voltage pulse greater than about 10 volts, removing the negative BSA voltage, and applying the negative voltage to the micromirror element.
    Type: Application
    Filed: October 24, 2012
    Publication date: October 31, 2013
    Inventors: Lance W. Barron, William C. McDonald
  • Patent number: 8541850
    Abstract: In accordance with one embodiment of the present disclosure, a semiconductor substrate includes complementary metal-oxide-semiconductor (CMOS) circuitry disposed outwardly from the semiconductor substrate. An electrode is disposed outwardly from the CMOS circuitry. The electrode is electrically coupled to the CMOS circuitry. A resonator is disposed outwardly from the electrode. The resonator is operable to oscillate at a resonance frequency in response to an electrostatic field propagated, at least in part, by the electrode.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 24, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Arun K. Gupta, Lance W. Barron, William C. McDonald
  • Publication number: 20110158439
    Abstract: A capacitive microphone transducer integrated into an integrated circuit includes a fixed plate and a membrane formed in or above an interconnect region of the integrated circuit. A process of forming an integrated circuit containing a capacitive microphone transducer includes etching access trenches through the fixed plate to a region defined for the back cavity, filling the access trenches with a sacrificial material, and removing a portion of the sacrificial material from a back side of the integrated circuit.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 30, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Brian E. Goodlin, Wei-Yan Shih, Lance W. Barron
  • Publication number: 20100148880
    Abstract: In accordance with one embodiment of the present disclosure, a semiconductor substrate includes complementary metal-oxide-semiconductor (CMOS) circuitry disposed outwardly from the semiconductor substrate. An electrode is disposed outwardly from the CMOS circuitry. The electrode is electrically coupled to the CMOS circuitry. A resonator is disposed outwardly from the electrode. The resonator is operable to oscillate at a resonance frequency in response to an electrostatic field propagated, at least in part, by the electrode.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Arun K. Gupta, Lance W. Barron, William C. McDonald
  • Patent number: 7576902
    Abstract: In accordance with the teachings of the present invention, a spatial light modulator mirror metal having enhanced reflectivity is provided. In a particular embodiment of the present invention, a light processing system includes a light source operable to provide a light beam along a light path and a spatial light modulator positioned in the light path, the spatial light modulator comprising an array of pixel elements, each pixel element comprising a deformable micro-mirror operable to reflect the light beam in at least one direction. At least a portion of each deformable micro-mirror comprises an Al—Cu alloy. A controller electrically connected to the spatial light modulator is operable to provide electrical signals to the spatial light modulator to cause the spatial light modulator to selectively deform the pixel elements, thereby selectively reflecting incident light beams along a projection light path.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: August 18, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Jason M. Neidrich, Lance W. Barron
  • Publication number: 20080055704
    Abstract: In accordance with the teachings of the present invention, a spatial light modulator mirror metal having enhanced reflectivity is provided. In a particular embodiment of the present invention, a light processing system includes a light source operable to provide a light beam along a light path and a spatial light modulator positioned in the light path, the spatial light modulator comprising an array of pixel elements, each pixel element comprising a deformable micro-mirror operable to reflect the light beam in at least one direction. At least a portion of each deformable micro-mirror comprises an Al—Cu alloy. A controller electrically connected to the spatial light modulator is operable to provide electrical signals to the spatial light modulator to cause the spatial light modulator to selectively deform the pixel elements, thereby selectively reflecting incident light beams along a projection light path.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 6, 2008
    Inventors: Jason M. Neidrich, Lance W. Barron