Patents by Inventor Lanchun Lu

Lanchun Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190216323
    Abstract: Systems and methods are provided for a catheter-based system of image-guided internally-administered treatment of medical conditions such as, for example, pancreatic cancer. A distal end of a catheter is positioned at a target site inside a patient's body. An imaging probe extended through the catheter collects image data of patient tissue at the target site. The image data is processed and a treatment plan is developed. A radiation source positioned at the distal end of the catheter without removing the catheter. In this way, images collected at the target tissue site can be used to develop a treatment plan and to guide the localized positioning and operation of a treatment device at the same internal tissue site—thereby providing higher resolution imaging than external-based imaging modalities and reduced exposure to radiation as compared to externally applied radiation therapies.
    Type: Application
    Filed: January 30, 2019
    Publication date: July 18, 2019
    Inventors: Lanchun Lu, Zhilin Hu
  • Patent number: 10231625
    Abstract: Systems and methods are provided for a catheter-based system of image-guided internally-administered treatment of medical conditions such as, for example, pancreatic cancer. A distal end of a catheter is positioned at a target site inside a patient's body. An imaging probe extended through the catheter collects image data of patient tissue at the target site. The image data is processed and a treatment plan is developed. A radiation source positioned at the distal end of the catheter without removing the catheter. In this way, images collected at the target tissue site can be used to develop a treatment plan and to guide the localized positioning and operation of a treatment device at the same internal tissue site—thereby providing higher resolution imaging than external-based imaging modalities and reduced exposure to radiation as compared to externally applied radiation therapies.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 19, 2019
    Assignee: OHIO STATE INNOVATION FOUNDATION
    Inventors: Lanchun Lu, Zhilin Hu
  • Publication number: 20160263401
    Abstract: Systems and methods are provided for a catheter-based system of image-guided internally-administered treatment of medical conditions such as, for example, pancreatic cancer. A distal end of a catheter is positioned at a target site inside a patient's body. An imaging probe extended through the catheter collects image data of patient tissue at the target site. The image data is processed and a treatment plan is developed. A radiation source positioned at the distal end of the catheter without removing the catheter. In this way, images collected at the target tissue site can be used to develop a treatment plan and to guide the localized positioning and operation of a treatment device at the same internal tissue site—thereby providing higher resolution imaging than external-based imaging modalities and reduced exposure to radiation as compared to externally applied radiation therapies.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 15, 2016
    Inventors: Lanchun Lu, Zhilin Hu
  • Publication number: 20140270076
    Abstract: The present application relates to rodent radiation device that enables simultaneous radiation treatment of a plurality of small animals such as mice with localized radiation therapy. The device can provide clinically-relevant homogeneous radiation dosing and scheduling to a plurality of small animals or other in vivo cancer models simultaneously. Specifically, the multi station/unit design of the device allows for rapid loading of anesthetized small animals into radiation shield chambers that absorbs over 95% of the delivered dose and protects the remainder of the untreated animal, allowing for more clinically accurate recapitulation of radiotherapy regimens. In one embodiment, a total of 40-50 Gy is delivered in 20-25 fractions to small animals with more than 95% survival rates.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Christopher E. Pelloski, James L. Sommerfeld, Kathryn Bondra, Lanchun Lu