Patents by Inventor Lang Yuan

Lang Yuan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240119897
    Abstract: A pixel circuit and a driving method therefor and a display panel are provided. The pixel circuit includes a driving circuit, a data writing circuit, a storage circuit, and a first reset circuit; the driving circuit includes a control terminal, a first terminal, and a second terminal, and is configured to control a driving current flowing through the first terminal and the second terminal for driving a light-emitting element to emit light; the data write circuit is configured to write a data signal into the control terminal of the driving circuit; the storage circuit is configured to store the data signal; the first reset circuit is configured to apply a first initialization voltage to the control terminal of the driving circuit; the driving circuit and the data write circuit each include an N-type thin film transistor; and the first reset circuit includes an N-type oxide thin film transistor.
    Type: Application
    Filed: July 5, 2022
    Publication date: April 11, 2024
    Applicants: Chengdu BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Zhenhua Zhang, Dongfang Yang, Xilei Cao, Xueguang Hao, Lang Liu, Jingyi Feng, Changlong Yuan, Xiaoxin Li, Li Zhu
  • Patent number: 11937480
    Abstract: A display substrate and a display device are provided. The display substrate includes a base substrate and sub-pixels on the base substrate. At least one sub-pixel includes a first transistor, a second transistor and a storage capacitor. The display substrate further includes an extension portion protruding from the gate electrode of the first transistor, and the extension portion is extended from the gate electrode of the first transistor in the second direction; the extension portion is at least partially overlapped with the first electrode of the second transistor in a direction perpendicular to the base substrate and is electrically connected with the first electrode of the second transistor; in the first direction, the extension portion has a second side closest to the second capacitor electrode, and the second side is recessed in a direction away from the second capacitor electrode.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: March 19, 2024
    Assignees: HEFEI BOE JOINT TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Zhongyuan Wu, Yongqian Li, Can Yuan, Zhidong Yuan, Meng Li, Dacheng Zhang, Lang Liu
  • Patent number: 11922874
    Abstract: The present disclosure provides a display control method and a display control device. The display control method is used for a display panel. The display panel includes at least a first display area and a second display area arranged in a first direction, the first display area is coupled to a first signal line, and the second display area is coupled to a second signal line. The display control method includes: controlling a first sub-pixel in the first display area to display an image via the first signal line; and controlling a second sub-pixel in the second display area to display an image via the second signal line. A light-emission phase of the first sub-pixel at most partially overlaps a light-emission phase of the second sub-pixel.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: March 5, 2024
    Assignees: Hefei BOE Joint Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Zhidong Yuan, Can Yuan, Yongqian Li, Lang Liu
  • Patent number: 11586388
    Abstract: Storage systems are disclosed. For instance, a storage system comprises a first storage device of a first type and a second storage device of a second type, and the first storage device has a higher access velocity than the second storage device. A threshold indicating a volume limit of data stored in the first storage device can be determined. Data, which is specified by a write request for writing data to the storage system, is written to the first storage device in response to determining the data amount in the first storage device is lower than the threshold. A read request from a client device is processed based on data stored in the first storage device. Consequently, the first storage device with a higher access velocity in the storage system may be utilized as much as possible, so that storage device latency in the storage system is managed more effectively.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: February 21, 2023
    Assignee: EMC IP Holding Company LLC
    Inventors: Willa Lang Yuan, Chark Wenshuai Yu
  • Publication number: 20230030701
    Abstract: An additive manufacturing system including a housing configured to contain a powder bed of material, and an array of laser emitters having a field of view. The array is configured to melt at least a portion of the powder bed within the field of view as the array translates relative to the powder bed. The system further includes a spatter collection device including a diffuser configured to discharge a stream of gas across the powder bed, and a collector configured to receive the stream of gas and contaminants entrained in the stream of gas. The collector is spaced from the diffuser such that a collection zone is defined therebetween, and the spatter collection device is configured to translate relative to the powder bed such that the collection zone overlaps with the field of view of the array.
    Type: Application
    Filed: October 12, 2022
    Publication date: February 2, 2023
    Inventors: William Thomas Carter, Justin John Gambone, JR., Lang Yuan, David Charles Bogdan, JR., Marshall Gordon Jones
  • Patent number: 11484970
    Abstract: An additive manufacturing system including a housing configured to contain a powder bed of material, and an array of laser emitters having a field of view. The array is configured to melt at least a portion of the powder bed within the field of view as the array translates relative to the powder bed. The system further includes a spatter collection device including a diffuser configured to discharge a stream of gas across the powder bed, and a collector configured to receive the stream of gas and contaminants entrained in the stream of gas. The collector is spaced from the diffuser such that a collection zone is defined therebetween, and the spatter collection device is configured to translate relative to the powder bed such that the collection zone overlaps with the field of view of the array.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: November 1, 2022
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Justin John Gambone, Jr., Lang Yuan, David Charles Bogdan, Jr., Marshall Gordon Jones
  • Publication number: 20210311669
    Abstract: Storage systems are disclosed. For instance, a storage system comprises a first storage device of a first type and a second storage device of a second type, and the first storage device has a higher access velocity than the second storage device. A threshold indicating a volume limit of data stored in the first storage device can be determined. Data, which is specified by a write request for writing data to the storage system, is written to the first storage device in response to determining the data amount in the first storage device is lower than the threshold. A read request from a client device is processed based on data stored in the first storage device. Consequently, the first storage device with a higher access velocity in the storage system may be utilized as much as possible, so that storage device latency in the storage system is managed more effectively.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Willa Lang Yuan, Chark Wenshuai Yu
  • Patent number: 11068207
    Abstract: Storage systems are disclosed. For instance, a storage system comprises a first storage device of a first type and a second storage device of a second type, and the first storage device has a higher access velocity than the second storage device. A threshold indicating a volume limit of data stored in the first storage device can be determined. Data, which is specified by a write request for writing data to the storage system, is written to the first storage device in response to determining the data amount in the first storage device is lower than the threshold. A read request from a client device is processed based on data stored in the first storage device. Consequently, the first storage device with a higher access velocity in the storage system may be utilized as much as possible, so that storage device latency in the storage system is managed more effectively.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: July 20, 2021
    Assignee: EMC IP HOLDING COMPANY LLC
    Inventors: Willa Lang Yuan, Chark Wenshuai Yu
  • Patent number: 11020955
    Abstract: A method of method of forming or repairing a superalloy article having a columnar or equiaxed or directionally solidified or amorphous or single crystal microstructure includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array corresponding to a pattern of a layer of the article onto a powder bed of the superalloy to form a melt pool; and controlling a temperature gradient and a solidification velocity of the melt pool to form the columnar or single crystal microstructure.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: June 1, 2021
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Marshall Gordon Jones, Lang Yuan, Ning Zhou, Steven Jude Duclos
  • Patent number: 10906132
    Abstract: An additive manufacturing system configured to manufacture a component including scan strategies for efficient utilization of one or more laser arrays. The additive manufacturing system includes at least one laser device, each configured as a laser array, and a build platform. Each laser device is configured to generate a plurality of laser beams. The component is disposed on the build platform. The at least one laser device is configured to sweep across the component and the build platform in at least one of a radial direction, a circumferential direction or a modified zig-zag pattern and simultaneously operate the one or more of the plurality of individually operable laser beams corresponding to a pattern of the layer of a build to generate successive layers of a melted powdered material on the component and the build platform corresponding to the pattern of the layer of the build. A method of manufacturing a component with the additive manufacturing system is also disclosed.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: February 2, 2021
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jason Harris Karp, Justin John Gambone, Jr., Lang Yuan, David Charles Bogdan, Jr., Victor Petrovish Ostroverkhov, Marshall Gordon Jones, Michael Evans Graham, Kevin George Harding
  • Publication number: 20200387328
    Abstract: Storage systems are disclosed. For instance, a storage system comprises a first storage device of a first type and a second storage device of a second type, and the first storage device has a higher access velocity than the second storage device. A threshold indicating a volume limit of data stored in the first storage device can be determined. Data, which is specified by a write request for writing data to the storage system, is written to the first storage device in response to determining the data amount in the first storage device is lower than the threshold. A read request from a client device is processed based on data stored in the first storage device. Consequently, the first storage device with a higher access velocity in the storage system may be utilized as much as possible, so that storage device latency in the storage system is managed more effectively.
    Type: Application
    Filed: October 11, 2019
    Publication date: December 10, 2020
    Inventors: Willa Lang Yuan, Chark Wenshuai Yu
  • Patent number: 10821512
    Abstract: An additive manufacturing system includes a powder bed and at least one energy source configured to produce at least one energy beam for forming a build layer of a component from the powder bed. The additive manufacturing system further includes a computing device coupled to the at least one energy source. The computing device includes a processor and a memory device. The memory device includes instructions configured to cause the computing device to execute a manufacturing plan for manufacturing the component, receive component thermal data corresponding to at least a portion of the component during manufacturing of the component, and control the at least one energy beam in response to receiving the component thermal data to produce a predetermined microstructure within the portion of the component.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: Lang Yuan, Ning Zhou
  • Patent number: 10814429
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device is configured to simultaneously modulate the intensity of the laser beam to thermally control the melt pool.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Lang Yuan, Prabhjot Singh, Michael Evans Graham, Robert John Filkins, Thomas Etter, Felix Martin Gerhard Roerig
  • Patent number: 10695865
    Abstract: A controller for use in an additive manufacturing system including at least one laser device configured to generate at least one melt pool in powdered material including a processing device and a memory device. The controller is configured to generate at least one control signal to control a power output of the at least one laser device throughout at least one scan path across the layer of powdered material, the scan path generated at least partially based on a functional relationship between a plurality of points of a generating path and each point of a plurality of points of the scan path. The controller is further configured to generate a non-uniform energy intensity profile for the scan path, and transmit the control signal to the laser device to emit at least one laser beam to generate at least one melt pool.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: June 30, 2020
    Assignee: General Electric Company
    Inventors: Michael Evans Graham, Lang Yuan
  • Publication number: 20200180297
    Abstract: A method of method of forming or repairing a superalloy article having a columnar or equiaxed or directionally solidified or amorphous or single crystal microstructure includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array corresponding to a pattern of a layer of the article onto a powder bed of the superalloy to form a melt pool; and controlling a temperature gradient and a solidification velocity of the melt pool to form the columnar or single crystal microstructure.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 11, 2020
    Inventors: William Thomas CARTER, Marshall Gordon JONES, Lang YUAN, Ning ZHOU, Steven Jude DUCLOS
  • Patent number: 10532556
    Abstract: A method of method of forming or repairing a superalloy article having a columnar or equiaxed or directionally solidified or amorphous or single crystal microstructure includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array corresponding to a pattern of a layer of the article onto a powder bed of the superalloy to form a melt pool; and controlling a temperature gradient and a solidification velocity of the melt pool to form the columnar or single crystal microstructure.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Marshall Gordon Jones, Lang Yuan, Ning Zhou, Steven Jude Duclos
  • Patent number: 10518356
    Abstract: A method includes applying thermal and/or strain modeling to the CAD representation of an object. In addition, scan path data is generated based at least in part on a result of the thermal and/or strain modeling. A build file comprising the scan path data is generated. The build file comprises instructions that configure an additive manufacturing tool to generate the object according to the scan path data.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 31, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Michael Evans Graham, Lang Yuan, Thomas Adcock, Justin Gambone, Jr., James Sears, John Madelone
  • Patent number: 10500832
    Abstract: An additive manufacturing system is configured to manufacture a component. The additive manufacturing system includes a laser device, a build platform, a first scanning device, and an air knife. The laser device is configured to generate a laser beam. The component is disposed on the build platform. The air knife is configured to channel an inert gas across the build platform. The first scanning device is configured to selectively direct the laser beam across the build platform. The laser beam is configured to generate successive layers of a melted powdered build material on the component and the build platform. The build platform is configured to rotate the component relative to the air knife.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: December 10, 2019
    Assignee: General Electric Company
    Inventors: David Charles Bogdan, Jr., Jason Harris Karp, Justin John Gambone, Jr., Lang Yuan, Jinjie Shi, Victor Petrovich Ostroverkhov, Marshall Gordon Jones, William Thomas Carter, Harry Kirk Mathews, Jr., Kevin George Harding
  • Publication number: 20190240775
    Abstract: A method includes applying thermal and/or strain modeling to the CAD representation of an object. In addition, scan path data is generated based at least in part on a result of the thermal and/or strain modeling. A build file comprising the scan path data is generated. The build file comprises instructions that configure an additive manufacturing tool to generate the object according to the scan path data.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 8, 2019
    Inventors: Michael Evans GRAHAM, Lang YUAN, Thomas ADCOCK, Justin GAMBONE, JR., James SEARS, John MADELONE
  • Publication number: 20190232428
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device is configured to simultaneously modulate the intensity of the laser beam to thermally control the melt pool.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 1, 2019
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Lang Yuan, Prabhjot Singh, Michael Evans Graham, Robert John Filkins, Thomas Etter, Felix Martin Gerhard Roerig