Patents by Inventor Lara S. Crawford

Lara S. Crawford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11893327
    Abstract: System and method that allow utilize machine learning algorithms to move a micro-object to a desired position are described. A sensor such as a high speed camera or capacitive sensing, tracks the locations of the objects. A dynamic potential energy landscape for manipulating objects is generated by controlling each of the electrodes in an array of electrodes. One or more computing devices are used to: estimate an initial position of a micro-object using the sensor; generate a continuous representation of a dynamic model for movement of the micro-object due to electrode potentials generated by at least some of the electrodes and use automatic differentiation and Gauss quadrature rules on the dynamic model to derive optimum potentials to be generated by the electrodes to move the micro-object to the desired position; and map the calculated optimized electrode potentials to the array to activate the electrodes.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: February 6, 2024
    Assignee: XEROX CORPORATION
    Inventors: Ion Matei, Anne Plochowietz, Saigopal Nelaturi, Johan de Kleer, Jeng Ping Lu, Lara S. Crawford, Eugene M. Chow
  • Publication number: 20240036534
    Abstract: Control loop latency can be accounted for in predicting positions of micro-objects being moved by using a hybrid model that includes both at least one physics-based model and machine-learning models. The models are combined using gradient boosting, with a model created during at least one of the stages being fitted based on residuals calculated during a previous stage based on comparison to training data. The loss function for each stage is selected based on the model being created. The hybrid model is evaluated with data extrapolated and interpolated from the training data to prevent overfitting and ensure the hybrid model has sufficient predictive ability. By including both physics-based and machine-learning models, the hybrid model can account for both deterministic and stochastic components involved in the movement of the micro-objects, thus increasing the accuracy and throughput of the micro-assembly.
    Type: Application
    Filed: September 6, 2023
    Publication date: February 1, 2024
    Inventors: Anne Plochowietz, Anand Ramakrishnan, Warren Jackson, Lara S. Crawford, Bradley Rupp, Sergey Butylkov, Jeng Ping Lu, Eugene M. Chow
  • Publication number: 20230418273
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 28, 2023
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Patent number: 11772964
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: October 3, 2023
    Assignee: Xerox Corporation
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Patent number: 11762348
    Abstract: Control loop latency can be accounted for in predicting positions of micro-objects being moved by using a hybrid model that includes both at least one physics-based model and machine-learning models. The models are combined using gradient boosting, with a model created during at least one of the stages being fitted based on residuals calculated during a previous stage based on comparison to training data. The loss function for each stage is selected based on the model being created. The hybrid model is evaluated with data extrapolated and interpolated from the training data to prevent overfitting and ensure the hybrid model has sufficient predictive ability. By including both physics-based and machine-learning models, the hybrid model can account for both deterministic and stochastic components involved in the movement of the micro-objects, thus increasing the accuracy and throughput of the micro-assembly.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: September 19, 2023
    Assignee: XEROX CORPORATION
    Inventors: Anne Plochowietz, Anand Ramakrishnan, Warren Jackson, Lara S. Crawford, Bradley Rupp, Sergey Butylkov, Jeng Ping Lu, Eugene M. Chow
  • Patent number: 11747796
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: September 5, 2023
    Assignee: XEROX CORPORATION
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Patent number: 11673800
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: June 13, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Patent number: 11543806
    Abstract: One embodiment of the present disclosure provides a system and method for facilitating a search for a hybrid-manufacturing process plan for manufacturing an object. During operation, the system can obtain a set of partial order constraints constraining the order in which a set of at least two manufacturing actions, corresponding to addition or removal of predefined regions of space, appear in a process plan. The system can constrain, based on the set of partial order constraints, a search space. The search space can correspond to a tree in which the nodes represent the object's state and the edges represent available actions at each node. The system can then determine a set of optimized process plans represented by orderings of the actions, corresponding to paths on the search tree, that produce the desired final state in a cost-effective manner.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: January 3, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Lara S. Crawford, Morad Behandish
  • Publication number: 20220382227
    Abstract: Control loop latency can be accounted for in predicting positions of micro-objects being moved by using a hybrid model that includes both at least one physics-based model and machine-learning models. The models are combined using gradient boosting, with a model created during at least one of the stages being fitted based on residuals calculated during a previous stage based on comparison to training data. The loss function for each stage is selected based on the model being created. The hybrid model is evaluated with data extrapolated and interpolated from the training data to prevent overfitting and ensure the hybrid model has sufficient predictive ability. By including both physics-based and machine-learning models, the hybrid model can account for both deterministic and stochastic components involved in the movement of the micro-objects, thus increasing the accuracy and throughput of the micro-assembly.
    Type: Application
    Filed: May 21, 2021
    Publication date: December 1, 2022
    Inventors: Anne Plochowietz, Anand Ramakrishnan, Warren Jackson, Lara S. Crawford, Bradley Rupp, Sergey Butylkov, Jeng Ping Lu, Eugene M. Chow
  • Publication number: 20220214669
    Abstract: One embodiment of the present disclosure provides a system and method for facilitating a search for a hybrid-manufacturing process plan for manufacturing an object. During operation, the system can obtain a set of partial order constraints constraining the order in which a set of at least two manufacturing actions, corresponding to addition or removal of predefined regions of space, appear in a process plan. The system can constrain, based on the set of partial order constraints, a search space. The search space can correspond to a tree in which the nodes represent the object's state and the edges represent available actions at each node. The system can then determine a set of optimized process plans represented by orderings of the actions, corresponding to paths on the search tree, that produce the desired final state in a cost-effective manner.
    Type: Application
    Filed: January 4, 2021
    Publication date: July 7, 2022
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Lara S. Crawford, Morad Behandish
  • Publication number: 20220188486
    Abstract: System and method that allow utilize machine learning algorithms to move a micro-object to a desired position are described. A sensor such as a high speed camera or capacitive sensing, tracks the locations of the objects. A dynamic potential energy landscape for manipulating objects is generated by controlling each of the electrodes in an array of electrodes. One or more computing devices are used to: estimate an initial position of a micro-object using the sensor; generate a continuous representation of a dynamic model for movement of the micro-object due to electrode potentials generated by at least some of the electrodes and use automatic differentiation and Gauss quadrature rules on the dynamic model to derive optimum potentials to be generated by the electrodes to move the micro-object to the desired position; and map the calculated optimized electrode potentials to the array to activate the electrodes.
    Type: Application
    Filed: December 14, 2020
    Publication date: June 16, 2022
    Inventors: Ion Matei, Anne Plochowietz, Saigopal Nelaturi, Johan de Kleer, Jeng Ping Lu, Lara S. Crawford, Eugene M. Chow
  • Publication number: 20220153576
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Application
    Filed: February 4, 2022
    Publication date: May 19, 2022
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Publication number: 20220153575
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Application
    Filed: February 2, 2022
    Publication date: May 19, 2022
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Patent number: 11242244
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: February 8, 2022
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Publication number: 20210356951
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Patent number: 11079747
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating control signals in the scheme.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: August 3, 2021
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Publication number: 20200207617
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 2, 2020
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Publication number: 20200201306
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating control signals in the scheme.
    Type: Application
    Filed: January 3, 2020
    Publication date: June 25, 2020
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Patent number: 10558204
    Abstract: The system and method described below allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating control signals in the scheme.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: February 11, 2020
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Publication number: 20180174082
    Abstract: Embodiments of the present invention provide a system for modeling Quality of Service (QoS) including a customer's perceived QoS, and optimizing QoS and perceived QoS. The system improves significantly over previous systems and can conserve resources by optimizing the level of resource allocations to satisfy a Service Level Agreement (SLA), while satisfying the customer's impression of QoS. During operation, the system obtains an SLA between a provider and a customer, specifying a QoS metric and a corresponding range. The system then optimizes the customer's perceived QoS, which further comprises modeling the customer's perceived QoS and the QoS metric, based on an operational allocation of the provider. Optimizing the perceived QoS may further comprise determining an optimized level of the allocations that enhances the customer's modeled perceived QoS, and also corresponds to a modeled QoS metric within the range. The system may then set the provider's allocation to the optimized level.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 21, 2018
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Lara S. Crawford, Daniel H. Greene, Marzieh Nabi-Abdolyousefi